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CNPs are inspired by the flexibility of
but are structured as neural networks and
trained via gradient descent.

«  CNPs define a conditional distribution over functions
given a set of observations

* ACNP is invariant to permutation of the inputs

+ ACNP is scalable, achieving a running time complexity
O(n+m) for making m predictions with n observations
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Figure 1: 1D regression task
comparing CNPs and GPs
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Figure 2: Image completion with CelebA, CNPs can learn non ftrivial
kernels which would be nearly impossible to encode manually with GPs
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Mitigate underfitting

Aggregate the representation of the
context set in a more flexible way using cross-
attention while keeping permutation invariance
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Figure 3: The Models were trained on 28x28 MNIST and then tested on 64x64
Multi-MNIST, it illustrates the translation equivariance achieved by ConvCNPs
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Support translational equivariance
Incorporate  CNN which are explicitly
designed to satisfy this property into the CNP
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CNPs are inspired by the flexibility of stochastic
processes but are structured as neural networks and
trained via gradient descent.

»  CNPs define a conditional distribution over functions
given a set of observations

« A CNP is invariant to permutation of the inputs

« A CNP is scalable, achieving a running time complexity
O(n+m) for making m predictions with n observations
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Mitigate underfitting : Support translational equivariance
Aggregate the representation of the 1 Incorporate  CNN which are explicitly
context set in a more flexible way using cross- designed to satisfy this property into the CNP
attention while keeping permutation invariance
Context points Masking half Multi MNIST

Attn-CNP CNP context

Conv-CNP

Mean Variance

True 10% context

I

Mean Variance

CNP

Attn-CNP

Conv-CNP

Figure 2: CelebA image completion, CNPs can learn non trivial Figure 3: Multi-MNIST, Conv-CNP
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