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Motivation

CNPs are inspired by the flexibility of stochastic 
processes but are structured as neural networks and 
trained via gradient descent.

• CNPs define a conditional distribution over functions 
given a set of observations

• A CNP is invariant to permutation of the inputs
• A CNP is scalable, achieving a running time complexity 

O(n+m) for making m predictions with n observations

1D Regression
5 context points 50 context points

Figure 1: 1D regression task
comparing CNPs and GPs

Models

Architecture Equation

Training Objective

CNP [1] Attn-CNP [2] Conv-CNP [3]

2D Regression – Image Completion
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Figure 2: Image completion with CelebA, CNPs can learn non trivial
kernels which would be nearly impossible to encode manually with GPs

Aim: Mitigate underfitting
How: Aggregate the representation of the
context set in a more flexible way using cross-
attention while keeping permutation invariance

Figure 3: The Models were trained on 28x28 MNIST and then tested on 64x64
Multi-MNIST, it illustrates the translation equivariance achieved by ConvCNPs

Aim: Support translational equivariance
How: Incorporate CNN which are explicitly
designed to satisfy this property into the CNP
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Figure 2: CelebA image completion, CNPs can learn non trivial
kernels

Aim: Mitigate underfitting
How: Aggregate the representation of the
context set in a more flexible way using cross-
attention while keeping permutation invariance

Figure 3: Multi-MNIST, Conv-CNP
achieves translational equivariance

Aim: Support translational equivariance
How: Incorporate CNN which are explicitly
designed to satisfy this property into the CNP
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