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Abstract

GPT-3 (Brown et al., 2020) has attracted considerable attention due to its superior perfor-
mance across a wide range of Natural Language Processing (NLP) tasks, especially with its
powerful and versatile in-context few-shot learning ability. That is, it has been shown that by
carefully crafting a prompt, consisting of a few labelled examples followed by an unlabelled
example, GPT’3 is able to do few-shot sentiment classification, three-digit arithmetic and
much more. We seek to evaluate its performance on a novel and notably more complicated
task: few-shot Dialogue State Tracking (DST).

We propose a few-shot prompting framework that selects in-context examples based on
similarity which outperforms the original random in-context selection framework. We also
review and formalise the two types of completion strategies employed by previous literature,
which we name constrained and unconstrained, and propose a third "semi-constrained"
completion strategy, which is particularly well adapted for DST. Additionally, we propose a
prompt ensembling technique that reliably outperforms individual models. Furthermore, we
are the first, to the best of our knowledge, to fine-tune GPT-3 for the task of few-shot DST,
showing that it reliably outperforms its GPT-2 counterpart.

Furthermore, we seek to synthesise and formalise the largely heterogeneous body of
previous work on prompt programming and in-context learning for GPT-3. In an attempt to
contribute to the understanding of the strengths, weaknesses and inner-working of GPT-3,
we perform numerous ablative studies that validate and confute previous in-context learning
empirical findings: mainly, we find that natural language instructions in the prompt have little
impact on performance, larger language models do not always induce higher downstream
performance and that GPT-3 is highly sensitive to the order and number of the in-context

examples.
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Chapter 1
Introduction

Ever since OpenAl released Generative Pre-trained Transformer 3 (GPT-3) (Brown et al.,
2020), an autoregressive language model of 175B parameters, an order of magnitude larger
than anything else of its kind at the time, it has attracted lots of attention, expanding beyond
the academic literature and reaching mainstream media (GPT-3, 2021). Brown et al. (2020)
demonstrated that large language models are capable of much more than predicting the
next most likely word given a text sequence. For example, without any gradient updates
or fine-tuning, via its powerful and versatile in-context few-shot learning capabilities, it
achieves strong performance on numerous tasks such as translation, question-answering
and simple arithmetic (Brown et al., 2020). Similarly, it has seen large adoption across
commercial applications such as GitHub co-pilot, powered by OpenAI’s Codex (Chen et al.,
2021), which can generate code in numerous languages given natural language description
of the code, such as Python Docstring comments. Despite its success, right in line with
Moravec’s paradox (Moravec, 1988), it has demonstrated limited understanding of basic
logic, entailment and common-sense physics (Brown et al., 2020). With such a powerful tool
newly at the fingertips of academic research, the possibilities and open questions are endless.

At the same time, as the amount of digital data continuously grows, so have users’
demand for technologies that offer quick access to such data. Users increasingly rely on
digital assistants that support information search such as Siri, Google Assistant, Amazon
Alexa, etc. These technologies, capable of processing Task-Oriented Dialogue (TOD), allow
the user to converse with a computer system using natural language. Crucial to the inner-
working of TOD systems is the Dialogue State Tracking (DST) component, responsible for
parsing the textual representation of the dialogue to understand what the user is trying to
achieve.

In this dissertation, we demonstrate GPT-3’s capabilities of performing DST with just
a few-shots, that is with just a few examples of the DST task. We know GPT-3 can hold
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a conversation with a user, even convincing them that a human is on the other end (Elkins
and Chun, 2020). It is even a great actor: given a personality description, it sets the tone
of its responses to that of the described persona (Appendix A). This suggests that GPT-3
is able to model dialogue behaviour: it is able to keep track of contexts, match the user’s
tone and even make a joke (Winters, 2021). The challenge of GPT-3 DST, therefore, lies not
only in understanding the dialogue but also in finding ways to probe the language model
with the aim of extracting the necessary knowledge from the model and outputting it in a
structured form. This is achieved by carefully crafting a prompt that is fed to GPT-3 which
completes it with the most likely sequence of words. This leverages the technique known
as “in-context learning” (Brown et al., 2020): whereby the model is conditioned on a few
demonstrations of the task and is then expected to complete further instances of the task
simply by predicting the most likely completion. We show that GPT-3, by leveraging its
in-context learning abilities, previously applied principally to simple classification tasks such
as sentiment classification (Liu et al., 2021a) and textual entailment (Perez et al., 2021), is
capable of achieving competitive results on DST, a significantly more complex task than any
other reported in the literature to date, if the prompt is crafted effectively and the language
model constrained appropriately.

Amongst all the tasks GPT-3 was applied to in the original paper, the only sequence-to-
sequence task is machine translation: given text in one language translate it into a specified
target language. For GPT-3, which was trained primarily on natural language, converting
from one language to another is a much easier task than converting natural language to a
structured format, such as dialogue states. If we define the vocabulary of the output sequence
as the set of words and symbols allowed in the output and its syntax as how elements in
the vocabulary can be conjoined, then the difference in difficulty in the two tasks becomes
apparent. For translation, the vocabulary and the syntax of the output is simply the vocabulary
and syntax of the output language, which it has learned during pretraining!. On the other
hand, for DST, as long as the dataset in question did not appear in the pretraining data, it is
not aware of either the vocabulary or the syntax of the output sequence. Therefore, we can
think of DST as translation into an unknown language whose vocabulary is (usually) some
subset of the dialogue’s language’s vocabulary and the syntax is unknown as it depends on
the type of DST that is being performed and the way the belief states are linearised. Both
these pieces of information are usually inferred by the model as it sees thousands of training
examples and it is constructed into the architecture of the model (an output layer that has
dimension equal to the number of domains/slots in the dataset). In the case of in-context

'"While GPT-3 was trained primarily on the English language, throughout its pretraining phase it has seen
large amounts of text also from most other languages (Brown et al., 2020).
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learning with GPT-3, this has to be learned from the context alone. Furthermore, while
examples of translation are scattered throughout the internet and GPT-3’s pretraining data
in the form of multi-language websites and websites dedicated to translation, examples of
DST are much scarcer and likely not part of its pretraining data at all, forcing GPT-3 to
really do few-shot learning. While we could provide long natural language task specification,
enumerating the output vocabulary and exampling it in its syntax, we are limited in the length
of the prompt, such that the prompt and its completion must not exceed 2048 tokens (~ 700
words). For that reason, we must resort to cleverly selecting the in-context examples to show
how DST should be done for similar dialogues and constrain the search to best adhere to the
output syntax and vocabulary.

Firstly, we propose two completion search methods (constrained and semi-constrained
search), which outperform the traditional unconstrained search used by the original authors
(Brown et al., 2020) by constraining the model’s output to a reduced vocabulary. Since we
found that currently the bottleneck of the development and experimentation of GPT-3 based
applications is computational cost, we also provide systematic cost analysis of these and
other methods investigated. At the same time, we expect these costs to sharply decline as
competitors join the market, the technology improves, and compute costs shrink.

Thereafter, we demonstrate that the framing of the prompt has large effects on the
performance of the downstream task of DST. Specifically, we first propose a framework that
selects few-shot examples balancing similarity and diversity. Then, we validate previous
prompt programming findings on different tasks by studying them under the light of the
complex task of DST, such as the impact of the number and order of in-context example
ordering and the effect of model size on DST performance.

Finally, we also propose an ensemble technique for prompts that reliably results in higher

performance than any individual model across our experiments.

1.1 Thesis Overview

The remainder of the dissertation is structured as follows:

In Chapter 2, we present the related literature with particular focus on GPT-3 and its
in-context learning capabilities and on DST for the datasets used for evaluation (MultiwWOZ
and Schema Guided Dialogue Dataset).

In Chapter 3 we present our approach for performing few-shot DST using GPT-3. Mainly
we introduce previous and novel prompt programming techniques that lead to higher down-
stream performance. Additionally, we present our method for determining our experiment

size: to stay within the computational constraints of this research, while also investigating
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numerous different experimental settings, we developed a method for reducing the datasets’
size by a factor of ten while maintaining reliable and consistent experimental results.

Chapter 4 we validate the approaches presented in the previous chapter by evaluating
their DST performance on SGD and MultiWOZ. To get a better understanding of GPT-3, the
proposed approach and its transferability to tasks other than DST, we perform a series of
ablative studies of the systems.

In conclusion, Chapter 5 summarises the previous sections, presents the limitations and
the broader impacts of the method as well as propose future directions of research.



Chapter 2
Background

Following the structure of the title, we present the relevant literature firstly by introducing
language models and their meta-learning capabilities, with a particular focus on GPT-3 and
its in-context capabilities and, thereafter, follow with a review of Dialogue State Tracking

(DST) and its application to the two datasets used in the evaluation.

2.1 Predictive Language Models

A language model is a probability distribution over sequences of tokens, atomic pieces
of language, such as a word, sub-word units or characters (Bengio et al., 2003). Given a
sequence of m tokens, it assigns a probability p(f;.,,), where t;.,, refers to all tokens in the
sequence including the first and the m-th one. Similarly, a probability can be assigned to
each token conditioned on the other tokens in the context as follows: P(t|t1x—1,tk+1:m)-
Given a vocabulary V, if each possible joint probability was stored in a probability table
conditioned on every possible combination of tokens in the vocabulary, then the table would
grow exponentially with m: specifically, at the rate of ®(|V|™), where |V| is the size of the
vocabulary V. Another problem, which is more constraining in practice, is data sparsity: the
vast majority of possible token sequences are not even observed in training. One solution
is to make the assumption that the probability of a word only depends on the previous n
words, rather than all previous and all future words. This is known as an n-gram model
(Shannon, 1948) and works by calculating the co-occurrence statistics of tokens in the training
data. The aforementioned causal relationship assumption not only drastically reduces the
complexity of the task but also conveniently allows the models to be utilised in a generative
manner by autoregressively predicting the next most likely token, hence the terminology
“predictive language models”. As RNNs (Rumelhart et al., 1985) and LSTMs (Hochreiter and
Schmidhuber, 1997) gained popularity, they quickly spread to predictive language models,
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but it wasn’t until the adoption of the Transformer’s (Vaswani et al., 2017) encoder-decoder
architecture that the real potential of language models became apparent. The Transformer’s
architecture, thanks to its self-attention mechanisms, is capable of processing large amounts
of data much more efficiently while also overcoming the “long-term” dependency problem
(Bengio et al., 1993) that plagued previous sequence models. It was found that the decoder
component of the model worked excellently as a causal predictive language model (Radford
et al., 2018). It was then that researchers realised that it is possible to obtain state-of-the-art
performance on a wide array of tasks by finetuning predictive language models (Brown et al.,
2020).

Ever since researchers have been able to increase model capacity by increasing the
number of parameters and the amount of training data. The growth in the number of
parameters of the latest models over past few years speak for themselves: from 100 million
parameters (Radford et al., 2018), to 300 million parameters (Devlin et al., 2018), to 1.5
billion parameters (Radford et al., 2019a), to 8 billion parameters (Shoeybi et al., 2019),
11 billion parameters (Brown et al., 2020), and 17 billion parameters (Rosset, 2020), 1.6
trillion parameters (Raffel et al., 2019a) and finally 1.75 trillion parameters (Zhavoronkov,
2021) '. Each increase has reliably led to improvements on the downstream task, and there is
evidence suggesting that log loss of the model, which has been shown to correlate well with
the performance of many downstream tasks, follows a smooth trend of improvement with
scale (Kaplan et al., 2020) and has yet to plateau. This suggests that the trend of ever-growing
language models coupled with higher downstream task performance is unlikely to subside

anytime soon (Hernandez et al., 2021).

2.2 GPT-3

GPT-3 (Brown et al., 2020) is the third generation of GPT, the first predictive language
model combining the Transformer (Vaswani et al., 2017) architecture and the self-supervised
pre-training objective (Xu et al., 2021). It is trained in a self-supervised fashion on large
corpora of publically available semi-curated text datasets. The weighted pre-training dataset
is composed of Common Crawl (Raffel et al., 2019b) (60%), itself made up of 410B byte-
pair-encoded tokens scraped from numerous mostly English websites. The other pre-training
datasets are WebText2 (Kaplan et al., 2020) (22%), an extended version of WebText (Radford
et al., 2019b); Booksl (8%); Books2 (8%); and Wikipedia (3%). After pretrainingz, it

I'These last two numbers are not directly comparable with that of GPT-3, as not all weights are used at each
forward pass, but they still indicate a general trend towards larger language models.

2The details of pretraining are omitted for clarity and conciseness, as not essential for the understanding of
this dissertation. For details, refer to (Brown et al., 2020).
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became clear that the increase of an order of magnitude in the number of parameters led
to an equally outstanding improvement in the model’s capability of generating fluent text.
Moreover, it was capable of performing many other NLP tasks without fine-tuning or gradient
updates via its in-context learning ability (Brown et al., 2020).

OpenAl decided not to opensource the model’s code or its weights, but it has built a
closed-access Beta API for experimentation with all of their 4 GPT-3 models of varying sizes:
“S” (2.7 billion parameters), “M” (6.7 billion), “L” (13 billion) and “XL” (175 billion)*. The
model uses GPT-2’s dynamic tokenization (Radford et al., 2019a) to subdivide the prompt
and the completion into tokens. Crucially, the GPT-3’s computational cost translates directly
into monetary cost with a per-token cost that depends on the size of the model used, where
the user is charged based on the number of tokens in the prompt and the number of tokens in
the completion. For example, the prompt p = "The answer to life is", which if fed to GPT-3
generates the completion ¢ = "42", is tokenized as follows: p = "IThel answerl tol lifel is|"
and ¢ = 7|42

in this case is (|p| + |c|) x per-token price = 5 x per-token price, where |p| and |c| are the

”, where | indicates token boundaries. Therefore the cost of using GPT-3

token length of the p and c, respectively, and per-token price depends on the model size (see
Appendix B for exact amount).

2.3 In-Context Learning

Rather than generating text from scratch, a prompt can be provided for completion to GPT-3,
which it autoregressively completes with what it considers to be the most likely tokens - this
technique, known as prompting, allows GPT-3 completions to be conditioned and guided
by human-specified text. GPT-3 then greedily selects the next most likely token. While
this method is not theoretically optimal and other methods such as beam search could be
used, it is reportedly effective in practice (Brown et al., 2020). Amongst all applications of
prompting, the approach that attracted the most attention is “in-context learning” (Brown
et al., 2020): carefully crafting a prompt, composed of one or more labelled examples
followed an unlabelled one, as shown in Figure 2.1, GPT-3 is able to learn from the labelled
examples and make a prediction about the final label. Unlike traditional few-shot learning,
in-context learning occurs within the forward-pass upon each sequence and therefore with
no parameter updates, despite its misleading nomenclature “learning”. This is because

during pre-training, GPT-3 learned a broad set of skills and pattern recognition abilities

3These models are also referred to as Ada, Babbage, Curie and Davinci, respectively. The exact number of
parameters has not been disclosed by OpenAl, the numbers provided are estimates provided by Hendrycks et al.
(2020).
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Prompt

Tweet: "| loved the new Batman movie!"
Sentiment: Positive

Hi#

Tweet: "l hate it when my phone battery :,:3:::;9 2‘1{:3:’0
dies.." . GPT3 | Negative 0_75:/0
Sentiment: Negative positive 0.24%
. ? 0.06%
Tweet: "This new music video blew my

mind"

Sentiment:

Fig. 2.1 An example of GPT-3’s in-context learning ability. When the text on the left is
provided as the prompt to GPT-3, it is able to correctly identify the next most likely word in
the text sequence which corresponds to the sentiment label of the target tweet.

and it can then use these abilities at inference time to rapidly solve the desired task. This
framework was shown to perform strongly on many NLP benchmarks, including translation,
question-answering and cloze tasks, as well as several tasks that require on-the-fly reasoning
or domain adaptation, such as unscrambling words, using a novel word in a sentence, or
performing 3-digit arithmetic (Brown et al., 2020).

While in-context learning can be assimilated to fine-tuning as both serve as a way of
conditioning a language model on examples, the latter generally achieve higher downstream
performance, although it also results in a large language model that is costly to share and
serve Lester et al. (2021); Li and Liang (2021). In-context learning tend to perform worse
than fine-tuning because it is constrained by the model’s maximum prompt length (Brown
et al., 2020), which acts as an information bottleneck: mainly, fine-tuning can make use of
more of the training data than an in-context learner. Brown et al. (2020) have shown that,
for large language models, when the number of in-context examples increases, generally the
performance of the in-context learning approaches that obtained by the fine-tuned model. This
suggests that as the model’s prompt limit information bottleneck widens, the performance
gap between in-context learners and fine-tuned models shrinks. Given the practical prompt
length limits of predictive language models such as GPT-3, Shin et al. (2020) found that it is
possible to obtain significant improvements over manually engineered prompts by performing
a discrete search over all possible prompts. More recently, it has been shown that by “prompt
tuning” (Lester et al., 2021), similarily to "prefix tuning" (Li and Liang, 2021), can be used
to obtain “‘soft-prompts” that can condense the signal from an entire labelled dataset into
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that of a short prompt closing the downstream task performance gap with fine-tune models.
These soft-prompts are obtained via gradient descent on the parameters corresponding to the
prompt embedding, which is equivalent to perform the search on the continuous embedding
space of the prompt. This is similar to fine-tuning a model whose weights are all frozen
but the last layer; except that the parameters corresponding to the prompt embedding are
fine-tuned and all other parameters are frozen instead. The advantage of prompt tuning is
that, unlike large fine-tuned language models, this allows the use of the same large language
model, such as GPT-3, for numerous downstream tasks, by simply sharing this soft-prompt
rather than all the parameters of an entirely different fine-tuned model, greatly reducing
the sharing and serving cost. We conjecture that soft-prompts can therefore be viewed as a
theoretical upper bound on the performance of the downstream task if the optimal prompt
was selected; though, in most cases, this prompt is in practice unconstructable due to the
limitations of the finite and discrete space natural language prompts span.

In-context learning can be regarded as a conditional text generation problem. Concretely,
the probability of generating a label y = #,,,.,, conditioned on a prompt P = 1., is expressed

as

n

pOIP) =[] p(tiltriz1) 2.1)

=m

2.4 Dialogue State Tracking

DST refers to accurately estimating the user’s goal as a dialogue progresses. It is useful
because it helps in effectively reducing ambiguity inherent in language within a temporal
process like dialogue. DST is the act of determining the current state of the frame, usually in
the form of slot-value pairs, and, in some cases, the user’s most recent dialogue act (Jurastky
and Martin, 2000). The state of the frame thus does not depend solely on the latest utterance
pair, rather it depends on all previous utterances summarising all the user’s constraints up to
the current dialogue turn. The set of all slots is composed of two subsets: the informable slots
(often referred to as just "slots") and the requestable slots (Henderson, 2015). Informable
slots are attributes of the entities that the user may use to constrain their search. Requestable
slots are attributes of entities that the user may ask the value of. The slots can either be
categorical, when they can only take one of a predefined set of values, or non-categorical,
when the value can be anything. Each slot also can take one of the following special values:
Dontcare, when the user has no preference; or None, when the user has not yet specified a

value for that slot.
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In the datasets we study, we assume that the dialogues are between only two actors (the
user and the system) and that the dialogue turns are labelled only for user turns. Therefore,

we can write that for each dialogue composed of n utterance pairs (also known as turn pairs or

dialogue turns) D = {(so,u0), (51,52), .-, (Sn,un)}, the corresponding dialogue belief state
labels are y = {y,y2,...,yn}, Where y, corresponds to the dialogue belief states up until
turn n.

2.5 MultiwOzZ 2.1

Multi-Domain Wizard-of-Oz dataset (MultiWwOZ) (Budzianowski et al., 2018) is a fully-
labelled collection of human-human written conversations spanning over multiple domains
and topics. The dialogues span over 8 domains (restaurant, hotel, attraction, taxi, train,
hospital and police) some of which only appear in the test set (hospital and police). There
are 3,406 single-domain and 7,032 multi-domain (2-5 domains) dialogues. At the time of its
creation, MultiWOZ was one of the largest annotated task-oriented corpora. Larger corpora
have since been created, with different annotation schemes, but the MultiwOZ collections
are still widely used in the literature for reporting progress in dialogue belief state tracking.
Given that it was gathered from human-human dialogues via Amazon mechanical turk, the
data presented numerous mistakes and has had several iterations of data cleaning. For this
reason, we experiment with version 2.1%.

In this dataset, DST consists of accurately tracking the informable slots. The belief
state therefore takes the form {domain; : {slot; : valuey}}, where domain; is one of the
eight domains enumerated above, slot,, is the m-th slot of domain;, and valuey, is the cor-
responding value. The brace notation indicates a dictionary or list of key-value pairs.
Throughout our experiments we linearise the belief state in the following string form:
domain;-slot j=valuey;- - - ;domainy-slot y=valuey, where each slot-value pair is semi-colon
separated. While the belief state is permutation invariant (i.e. the order does not matter) and
case insensitive, to ensure deterministic behaviour, it is sorted in alphabetical order of the
keys. Here follows an example of a single-domain dialogue and its associated belief states in

the linearised format:

nn

S -

ur: "hi, can you find a brunch place in Cambridge?"

4Although a newer 2.2 version is available, it has not been widely used in experimentation yet and was
therefore not selected for our experiments
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y1: restaurant—city = cambridge; restaurant—type = brunch

sp: "can I recommend hot numbers?"

u: "yes please"

y2: restaurant—city = cambridge; restaurant—type = brunch;
restaurant —name = hot numbers

The metrics we report for DST on this dataset are the Average Joint Slot Accuracy (AJA)
(Equation 2.2) and the Average Slot Accuracy(AVG)> (Equation 2.3), where the labels are in
set notation and y,  refers to the label of the k-th turn of the n-th dialogue. The former of the
two metrics corresponds to the relative frequency with which the model correctly predicts all
the slots in the current belief state. The latter is the accuracy with which a slot is predicted

correctly taking into account both false positive and false negatives.

AJA = ZnLidn (2.2)
Y Xk Vnk
s
AVG — Zn 2k Yk Ink 23)
Zn Zkyn,k U Yn.k

State-of-the-art results are traditionally obtained by encoding the dialogue history (usually
with a fine-tuned BERT (Devlin et al., 2018)) followed by a feed-forward neural network
and some post-processing to generate a distribution over domains, slots and consequently
values (Mehri et al., 2020). Recently, decoder-based DST models, such as simple-TOD
(Hosseini-Asl et al., 2020) and UBAR (Yang et al., 2020) have both obtained competitive
results by finetuning GPT-2 (Radford et al., 2019a) for end-to-end DST.

2.6 Schema Guided Dialogue (SGD)

Today, the most widespread type of Task-Oriented Dialogue (TOD) systems are in large scale

virtual assistants, such as Alexa, Google Assistant and Siri. These systems integrate with

>This is different from the slot accuracy sometimes reported (Budzianowski et al., 2018), which only
accounts for slot name accuracy and not the value. We opt for this metric as, while it is less frequently used in
literature, it is more complete and informative.
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numerous third-party APIs to be able to perform actions across numerous, ever-growing and
potentially overlapping services. For example, Siri can play a song, find flights and make
dinner reservations. Moreover, these services vary amongst users (one user might use Apple
Music and the other Spotify) and evolve over time as the app is updated or the user installs
more services. While datasets of dialogues between humans and virtual assistants exist,
few have all the characteristics described above. Recently, Rastogi et al. (2020) released
the largest public dataset that simulates this environment: a set of 16,000+ multi-domain
TODs between a human and a virtual assistant spanning 26 services belonging to over 16
domains. In the same paper, they propose the Schema Guided TOD (SG-TOD) system as an
alternative to what they refer to as ontology-oriented TOD systems. SG-TOD systems are
unified natural language interfaces that integrate with a large number of dynamic internal
web services via their APIs.

In this new paradigm, every service provides a schema that provides the name of the
service, the functions provided (intents) and their respective parameters (slots). Each of the
aforementioned components is also accompanied by their natural language description and,
for the slots, if they are categorical, then also the permitted values. In previous literature, the
schema is used to learn a distributed semantic representation, which is given as an additional
input to the dialogue system (Ma et al., 2019). Therefore, the dialogue system can be
implemented as a single unified model, containing no domain or service-specific parameters.
These systems, by generalising their learning across services, should be capable of leveraging
common knowledge and operating on never before seen services (zero-shot learning).

The data structure of SGD is similar to that of MultiWOZ, though now the belief states

are different as each system-user utterance pair in each dialogue is annotated in three ways:

* Active intent(s): this describes the task the user is trying to accomplish. It is com-
posed of both the service name and the intent within that service (e.g. restau-
rants_I1/bookTable). All the services, active intents and their respective natural lan-
guage descriptions are known a priori, as they are reported in the schema. Each
dialogue turn has at most one active intent per service, though it can have none, at
which point the None label is assigned for that service’s active intent. One challenging
aspect of this task is that some services have overlapping functionality: for example,
restaurants_2 never appears in the test set but it has some similar, though not identical,
functionality to the restaurant_1 service; the challenge lies in the model having, there-
fore, to transfer its learnings from one service to the other. For this task, the metric
tracked is active intent accuracy (Intent Acc.), or the fraction of user turns for which
the active intent is correctly identified.
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* Goal: This corresponds to the informable slots, analogously to MultiWOZ; this task can
be broken down in two: first recognising the slots that are being mentioned (directly or
indirectly) in the dialogue so far (so it accumulates over turns); second, determining the
value of that slot. As in MultiWOZ both the AJA (Equation 2.2) and AVG (Equation

2.3) metrics are computed.

* Requested Slots: This corresponds to the slot names that the user is requesting in the
current utterance (requestable slots). For this task, the F1 score is computed to take

into account both specificity and sensitivity (Req. F1).

The linearisation of the belief state therefore also differs, as the active intents classifica-
tion and requested slots prediction can be viewed as parallel tasks to Goal prediction. An

example dialogue and respective linearised belief state is shown below®:

s1: "There is 1 movie called The Poseidon Adventure."
u;: "The Poseidon Adventure would be great for me to watch
now . "

yi: Active Intents: Media_1/PlayMovie | Requested Slots: None
| Slots: movie_name = The Poseidon Adventure;

Generally, the three aforementioned metrics are reported under three categories: all, seen
and unseen. These correspond to the metrics reported for all services, for services seen in the
training data, and for only the unseen services. If no category is specified when reporting
results, then the all category is assumed.

As for MultiWOZ, the standard approach, first proposed by Rastogi et al. (2020) and
further improved by Ma et al. (2019), consists of using an encoder-based model. Other than
the dialogue history, these systems also encode the schema. Then, for each service, the
dialogue and schema encodings are fed into a feed-forward neural network terminated by
a softmax, trained to predict the active intent (or None, if no intent is active for the given

service), and by a gelu (Hendrycks and Gimpel, 2016) activation function, trained to predict

There is at most one Active Intent per service per dialogue turn. There can be any number (up to the
number of slots) of Requested Slots or Slots and they are permutation invariant (i.e. the order does not matter)
and case insensitive.
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slots as requested if the activation is above a predefined threshold, for requested slot prediction.
For goal prediction, the approach differs when predicting categorical values and free-form
ones: if the value is categorical, then it is predicted similarly to the service’s active intent and
slots; if it is continuous, then a start and end index are predicted such that (s, + uy)[start;g, :
end; ;| corresponds to the slot value, where + represents the string concatenation operator
and s[i : j] indicates the substring of string s spanning from index i to index j, inclusive. For
example, if s, = "How can I help?" and u, = "I want to book a table at the Giggling Squid.",
then for the slot restaurant-name the model would predict start;;, = 45 and end;4,, = 59, such
that (s, + up)[startiy, : end;g] = Giggling Squid. Another successful approach has been that
of reducing SGD DST to a form of closed-book question answering (Zhang et al., 2021). To
the best of our knowledge, no attempts of applying a predictive language model for SGD
DST.



Chapter 3
Approach

In this chapter, we present our approach for performing DST on MultiWOZ and SGD by
leveraging GPT-3’s in-context learning abilities. Specifically, we showcase our prompt design
(Section 3.1), explain the different ways to constrain GPT-3’s completion search (Section
3.2) and present how prompt ensembling works (Section 3.3). Finally, we also present our
experimental set-up (Section 3.4), which includes the hyperparameter configurations and an
analysis of MultiWwOZ’s and SGD’s test sets; in particular, we discuss how we significantly
reduce the datasets’ evaluation split’s sizes while maintaining consistency of the metrics

across experiments.

3.1 Prompt
Listing 3.1 An example of the slot difference between the labels y,,_ and y,,.
Yn—1: restaurant—city = cambridge; restaurant—type = brunch
yp: restaurant—city = cambridge; restaurant—type = brunch;
restaurant —name = hot numbers
Yn—1—Yn: restaurant—name = hot numbers

Despite its powerful and versatile in-context learning ability, GPT-3 has some practical
challenges/ambiguities. The original paper (Brown et al., 2020) randomly samples from the
task’s training set to construct the context. In practice, it was found that the downstream

task’s results tend to fluctuate sporadically with different choices of in-context examples
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"nn

System:
User: "'find me a place to stay which has 0 stars and preferably a guest house'
Slot Difference: hotel-stars = 0; hotel-type = guesthouse

Hit#

System: '"'Can we narrow down your search by area?

User: "I would really like a guesthouse please."

Slot Difference: hotel-type = guesthouse

Fig. 3.1 An example of a prompt used to infer the belief state of a dialogue turn in the
MultiWOZ dataset. The prompt is bold, while the completion by GPT-3 is not.

System: '""There is 1 movie called The Poseidon Adventure."

User: ""The Poseidon Adventure would be great for me to watch now."
Active Intents: Media_1/PlayMovie

Requested Slots: None

Slot Difference: Media_1/title = The Poseidon Adventure;

Hit#

System: "I have successfully rented The Poseidon Adventure. You have a 3-day rental
period to watch this film."

User: '""How much will it cost to rent this movie?"

Active Intents: Media_1/RentMovie

Requested Slots: None

Slot Difference: None

Fig. 3.2 An example of a prompt used to infer the belief state of a dialogue turn in the SGD
dataset. The prompt is bold, while the completion by GPT-3 is not. The alternation between
bold and not bold text is obtained by providing the initial prompt to GPT-3, letting it complete
until the end of the line, then appending more predefined prompt, and so on
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(Liu et al., 2021a). Randomly selecting in-context examples has been shown to lead to
decreased performance (Liu et al., 2021a; Perez et al., 2021). We validate this finding for
SGD and MultiWOZ DST (Section 4.1), where randomly selecting in-context examples
incurs the risk of all the selected examples being too dissimilar and therefore uninformative
about how to label the target dialogue and leading to poor performance. For that reason, in
crafting the prompt, we must carefully define an in-context example selection strategy. While
brute-force approaches for finding the best combination of in-context examples have shown
to be effective (Shin et al., 2020), the complexity grows combinatorially with the size of the
training data; this quickly becomes infeasible as the number of training examples available
increases. Following the most recent findings on effective prompt formulation (Liu et al.,
2021a), we select in-context by searching through the training set for the k-nearest-neighbors
to the target example. We adopt this method as it was found to produce more consistent and
increased downstream performance (Liu et al., 2021a).

3.1.1 In-Context Example Selection Policy

To select the k-nearest-neighbors to the target example we use GPT-3’s semantic search
capabilities to find the examples in the training set that is closest to the target example.
Specifically, we first perform a simple keyword search! that finds the k¥’ (set to 15, unless
otherwise specified) most similar documents with the highest number of matching words.
These are then provided to GPT-3, which ranks the selection based on a similarity score that
ranges from O to 3002. Then, the top k most similar examples are selected. An example of
this selection policy is shown in Figure 3.3.

The initial filtering to just k' examples is done as a means of notably reducing the
computations assigned to GPT-3. Moreover, to further reduce the computations across
experiments, we cache these requests into a dictionary that maps every dialogue to its nearest
neighbours. This can also be done as a form of pre-processing. As the semantic search
module is deterministic and does not change across experiments, this further reduces the

complexity as repeated requests’ responses are stored across experiments.

I'The exact implementation of this keyword search is not public knowledge.

The scores are computed by combining the target example (query) and each training example (documents)
into a prompt that is fed to GPT-3; the prompting technique used is not public knowledge. If future research
decides to explore different search configurations, we recommend using an open-source alternative such as
KATE (Liu et al., 2021a), which is based on BERT.
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Training Data : ! Semantic Search Module
Keyword Semantic
Search Similarity
Score Score
| System: "There is 1 movie called The Poseidon Adventure.”
| User: "The Poseidon Adventure would be great for me to ] '
| watch now." 1 ! 20 260
| Active Intents: Media_1/PlayMovie ]
|| Requested Slots: None
i'| System: "In what area?" R k=2 Log
| User: "In London, UK, something that's good for children.” | i _— R
| Active Intents: Travel_1/FindAttractions : ! B
| Requested Siots: None
] . .
. : : . N
- 1 - L
1| System: "Which area i need to find?" ] H 1 . ¢ Prompt
| User: *I am willing to go to London, so please find it over ] ' H
| there?* ] 19 250 ] . i There i .
i ] : ] . | System: "There is 1 movie called The Poseidon Adventure.
|| ool i iz iliek ] ' ] W+ .. )i User: "The Poseidon Adventure would be great for me to
: | watch now.”
| Active Intents: Media_1/PlayMovie
A ! Requested Slots: None
. o

| System: "I have successfully rented The Poseidon
| Adventure. You have a 3 day rental period to watch this film.”
I D> User: "How much will it cost to rent this movie?"
R . ! Active Intents:

Target Example

i System: "I have successfully rented The Poseidon Adventure.

| You have a 3 day rental period to watch this film." e -
i User: "How much will it cost to rent this movie?" ]

| Active Intents:

Fig. 3.3 This is an illustrative example of the in-context example selection policy used to
construct a prompt used to classify a target example sampled from the SGD dataset. From
left-to-right, the training data and the target example are fed to the semantic search module
which, after filtering the whole training dataset to just k¥’ = 2 examples, ranks the examples
based on their semantic similarity and selects the k = 1 example that is most similar to the
target example. Then, to construct the prompt, the k in-context example(s) and the target
example are joined together, delimited by the separator "###" for clarity.
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3.2 Completions

Selecting the most likely sequence of tokens given a prompt is the main function of language
models. This is also known as generating completions. We identify three key types of

completions: unconstrained, constrained and semi-constrained.

3.2.1 Unconstrained

By default, GPT-3 autoregressively selects the most likely token amongst its whole vocabulary.
We refer to this as "unconstrained completions", as the selection happens amongst the entirety

of the vocabulary. This is done by autoregressively selecting tokens according to the policy

tm+1 = argmaxpP(t|ty.,) (3.1)
tev

where ?1.,, is all preceding tokens, until the end of the line (i.e. until a newline character
is predicted). To better understand this completion method and compare it to the others
presented below, we can examine its asymptotic token complexity, which we define as the
upper and lower bound on the number of tokens in the prompt and the subsequently generated
completion. This is inspired by the asymptotic big-0 notation (Iwaniec and Kowalski, 2004)

used to study the running complexity of algorithms. Unconstrained completions have token

complexity of @(m+ |c ), where m is the token length of the prompt and |c * | the token

length of the completion.

3.2.2 Constrained

When doing tasks such as DST or classification tasks at large, it is common to have only
a finite set of possible labels. For example, in MultiWOZ there are only 8 domains and
each has a well-defined set of possible slots. Similarly, SGD has a schema that defines
the possible services, intents, slots and, in the case of categorical slots, also the possible
slot values. Therefore, to prevent the model from generating unallowed belief states, we
constrain the search of token sequences to just ones allowed by the dataset. Given a set
of completions C = {cy, ¢z, ,c,} and a prompt ¢;.,, categorical completions select the

completion according to the following criteria

argmax p(c|ti.m) (3.2)
ceC

Unfortunately, while this is trivial in theory, this is not available in OpenAI’s API and

the workaround we developed (presented in Appendix C) is very expensive in practice. In
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particular, while the prompt remains unchanged compared to the unconstrained setting, the
token complexity would in theory be ®(m+ Y. .cc |c|) if allowed by the APIL, but in practice
is O(Y..cc|c|lm), where |c| is the size of a completion ¢ belonging to the set of all possible
completions C. This difference in costs quickly scales as the set of possible values increases
or the size of the model increases.

In this approach, one completion must be selected amongst a set of possibilities. This
requires a scoring function to evaluate and rank each completion and then selecting the
highest-ranking one. To date, three categorical completion scoring functions have been
proposed: likelihood (Brown et al., 2020), per-token average likelihood (Brown et al., 2020)
and Domain-Conditional Probabilistic Mutual Information (DC-PMI) (Brown et al., 2020;
Holtzman et al., 2021).

Likelihood (.¥)

The most common completion strategy is that of selecting the one with the highest total
likelihood (Brown et al., 2020). Equivalently, without loss of generality, for computational
convenience, the log likelihood is measured instead. Formally, we write:

£ = argmaxlog p(c|ty.m) (3.3)
ceC

Per-Token Average Likelihood (AVG — %)

Brown et al. (2020) found that when completions have largely varying lengths, normalising
their likelihood for length led to noticeable improvements in downstream performance. In
particular, Brown et al. (2020) propose dividing the likelihood by |c|, the length of the

completion in tokens. The corresponding policy is defined as follows:

Hom
AVG-.Z = argmaxlog M

34
raxlog = G4

Domain-Conditional Probabilistic Mutual Information (DC-PMI)

DC-PMI was invented to tackle the problem of surface form competition errors (Holtzman
et al., 2021), which categorical completions are susceptible to surface-form competition
errors (Holtzman et al., 2021), whereby alternative formulation of the same underlying
concept compete for probability mass. For example, if the user says “I want to travel to
Milan, Texas” and we are trying to extract the value corresponding to slot country whose
possible values are C = {"USA”,”Italy”,”England”}, GPT-3 correctly identifies "USA"
to be the highest as YV .ccp(prompt +"USA”) > p(prompt + c); this can fail when the
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possible completions are uncommon; for example, if the set of possible completions is
C={"U.S.ofAmerica”,”Italy”,”England”}, then GPT-3 predicts “Italy” as the most likely
completion. This is because we can think of the prior of “Italy” to be comparable to that
of “USA” but way higher than that of “U.S. of America”, which rarely occurred in GPT-3
pre-training. For that reason, we say that GPT-3 is biased towards a priori likely completions.

To overcome this, Brown et al. (2020) introduced Domain-Conditional Probabilistic
Mutual Information (DC-PMI) a method later formalised and extended by Holtzman et al.
(2021). The scoring function has the following form:

argmax log plelfin) A argmax log _ pleltim)
ceC p(c) ceC  p(c|domain)

(3.5)

Where p(c) is the prior of the completion. In practice, this quantity, which can be
obtained by marginalising over all possible prompts, is intractable and therefore we resort
to approximated it by p(c|domain), which signifies having GPT-3 compute the likelihood
of the completion conditioned on some short prompt. The original paper (Holtzman et al.,
2021) found that, in zero-shot settings, simply conditioning on the label text ("Slot Dif-
ference:"/" Active Intent:"/"Requested Slots:") led to improved results. In our experiments
(Section 4.1.1), we demonstrate that, for DST, higher performance can be obtained by

conditioning on other short domain prompts.

3.2.3 Semi-constrained

To overcome surface-form competitions errors, maintain a low token complexity and constrain
the search of possible completions, we introduce the third and final completion strategy:
semi-constrained. This consists of inserting the possible values the label can take somewhere
in the prompt and letting GPT-3 complete the prompt in an unconstrained manner. An
instance of a prompt using this completion is shown in Figure 3.4. The advantage of this
approach is that it suggests to GPT-3 the possible values the completion can take. This
method has token complexity®(m + |c* |+ Y. .cc |c])-

3.3 Ensemble Prompts

A novel approach is that of prompt ensembles: rather than feeding just one prompt to GPT-3
to get the corresponding completion, we provide multiple prompts, where one or more of its
features are changed. Then each prompt is separately passed to GPT-3, which generates the

predicted labels for each prompt. Finally, only the most popular predicted labels are selected.
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System: '""There is 1 movie called The Poseidon Adventure."

User: '"The Poseidon Adventure would be great for me to watch now."

Active Intents (Media_1/FindMovies, Media_1/PlayMovie, Media_1/RentMovie):
Media_1/PlayMovie

Requested Slots (Media_1/title, Media_1/genre, Media_1/subtitles,
Media_1/directed_by): None

Slot Difference (Media_1/title, Media_1/genre, Media_1/subtitles,
Media_1/directed_by): Media_1/title = The Poseidon Adventure;

HiHt

System: "'I have successfully rented The Poseidon Adventure. You have a 3 day rental
period to watch this film."

User: '""How much will it cost to rent this movie?"

Active Intents (Media_1/FindMovies, Media_1/PlayMovie, Media_1/RentMovie) :
Media_1/RentMovie

Requested Slots (Media_1/title, Media_1/genre, Media_1/subtitles,
Media_1/directed_by): None

Slot Difference (Media_1/title, Media_1/genre, Media_1/subtitles,
Media_1/directed_by): None

Fig. 3.4 An example of a prompt used to infer the belief state of a dialogue turn in the SGD
dataset for semi-constrained completions. The prompt is bold, while the completion by
GPT-3 is not. The alternation between bold and not bold text is obtained by providing the
initial prompt to GPT-3, having it complete until a predefined stop character (in this case,
the new line character), including the completion in the new prompt and appending more
predefined prompt.
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We identify two key steps in this approach: the ensemble prompt generation and the voting
mechanism.

While other prompt ensemble techniques have been proposed (Gao et al., 2020; Schick
and Schiitze, 2020b), none have been used for in-context learning and they all require the

manual formulation of multiple prompts, which is costly and sometimes not possible.

3.3.1 Ensemble Prompt Generation

For the ensembled prompts generation, we settled for an exclusive in-context example
roulette selection methodology. This consists of selecting k in-context examples from the
max_rerank keyword-search filtered examples, scoring them with GPT-3 as before, but rather
than selecting the top k& most similar, they are chosen via roulette selection with fitness
proportional to their similarity score. This means each example is selected randomly with

probability:

_ sim(t,ey)
P =1 sim(e e

Where sim(t,ey) is a similarity measure between the target example ¢ and e; as computed

(3.6)

by GPT-3 and described in Section 3.1. The “exclusive” nomenclature is due to the sampling
method: after an example is selected it is excluded from future samples within this and all
other ensemble models. This is opposed to what we call inclusive sampling, where the drawn
samples can be drawn again and therefore different prompts within the same ensemble can

contain overlapping in-context examples.

3.3.2 Ensemble Voting Mechanism

We employ a majority voting mechanism: a label is selected if at least half of the ensemble’s
predictions contained that label. For example, if three different prompts are generated then

the following linearised belief states is outputted:

Slot Difference: time=2pm, day=Wednesday,
Slot Difference: time=2pm, restaurant=Honest Burger,
Slot Difference: None

Then the resulting belief state would only include the slot-value pairs that appeared in at least
half of the belief states:

Slot Difference: time=2pm
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This helps in sifting out the language model’s hallucinations, whereby GPT-3, when
generating text in an unconstrained manner, tends to produce factually incorrect text. This
is particularly problematic in a task like DST, where generating well-structured, precise
and factually correct text is essential. Moreover, our experiments tended to show that
hallucinations in the generated belief state tended to be highly correlated with the in-context
examples provided. For example, if some of the in-context example’s belief states included a
given slot-value pair, such as date=13/03, then when the model generated the target belief
state it would tend to also include the same slot-value pair. By generating multiple belief
state completions, but only selecting the slot-value pairs when at least half of the generated
belief states included it, this effectively kept only the factually correct components of each
belief state. This is because, while generated belief states could still include hallucinations,

they would be different hallucinations and therefore not included in the final belief state.

3.4 Experimental Setup

3.4.1 Model Configuration

All experiments in Chapter 4, unless otherwise specified, are run with the smallest of the
GPT-3 models presented in Section 2.2 (S) and k = 2 in-context examples. This was done
because the smaller models and shorter prompts are the most token efficient and therefore
allow for more experiments.

All experiments are performed with models with deterministic completions (temperature
set to 0). All other model hyperparameters are left to their default values.

3.4.2 Experiment Size

Due to the limited funds for this thesis and the high computational cost of large language
models (per-token model costs shown in Appendix B), compute was the bottleneck in our
ability to gather data. Therefore, there was a constant trade-off to be made: run many
experiments on reduced test sets or run few experiments on the whole test sets.

The method we adopted to manage this trade-off was to select our baseline model and run
it on each of the datasets’ test partitions n = 5 times. Each time the order of the dialogues in
the test set was shuffled (the order of the turns within dialogues remains unchanged). Then,
based on the running metrics, we selected the minimum experiment size, as measured by the
percentage of the test set, for which the standard deviation of each metric was below 0.01.

While this method is effective at selecting an experiment size that results in consistent and
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Fig. 3.5 On top a visualisation of the running AJA and AVG, respectively, as a function of
the percentage of the test set of MultiWOZ, obtained by performing DST with our baseline
model, (k = 1, small (S) model, no ensemble, semi-constrained completions). Qualitatively, it
is clear the running metrics stabilise quickly and evaluating on the whole test set is therefore
not necessary. On the bottom, a close-up view of the top plots in the range of 0-14% of the
test set. In this plot, multiple runs of the shuffled test set are visible. The standard deviation
of the running metrics across the runs is within 0.005 after seeing just 6% of the test set,
indicating that the metrics are relatively stable.
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reliable overall performance for a given model, it is also flawed in that it is approximate as
different models might reach this threshold at different rates.

Figures 3.5 shows that evaluation on the entirety of MultiWOZ is likely unnecessary as
both metrics stabilise after testing on just a small fraction of the dataset. In fact, across all
our experiments on the baseline model evaluated after having seen only 6% the standard
deviation is below 0.05. The same analysis with the same confidence interval (£0.05) was
done with SGD and led us to select an experiment size of 8% for SGD. This experiment size
is adopted throughout all future experiments unless specified otherwise.



Chapter 4

Results

In this chapter, we present our empirical results and discuss our findings. Firstly, we compare
and contrast the empirical results of doing few-shot DST with each of the completion strate-
gies presented in Section 3.2 (Section 4.1). After selecting the semi-constrained completion
strategy due to its high performance and cost-efficiency, we present an ablative analysis of
the prompt to determine which prompt programming techniques are most impactful for DST
(Section 4.2); this shines a light on the largely non-understood and under-researched area of
prompt programming which can aid future research in designing more effective prompts for
few-shot language model research and applications. Next, we evaluate the impact of using
prompt sharing techniques as a means of improving DST performance (Section 4.2.3). We
then proceed with the experimental results obtained via prompt ensembling (Section 4.4).
Finally, we conclude with some preliminary experimentation of fine-tuned GPT-3 models,
which allows for a comparison with fine-tuned GPT-2’s and in-context learning GPT-3’s
capabilities.

Throughout the experiments, we focus primarily on the results for the MultiWOZ dataset,
as they are simpler to interpret due to the smaller number of tracked metrics (two instead
of twelve metrics are tracked), and generally show consistent results to the ones obtained
on the SGD dataset. Where the results on the two datasets disagree, the results and their
discrepancies are presented. Furthermore, amongst the MultiWOZ results, particular focus
is directed towards the AVG metric (Equation 2.3) because this metric is more complete
(tracking both sensitivity and specificity) and more sensitive to small changes compared to
AJA (Equation 2.2). The complete results of all experiments can be viewed in tabular form

in Appendix D.
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Completion Strategy \ Token Complexity Effective Token Usage \ AJA AVG

Unconstrained O(m—+|cx|) 661,500 0.09 0.24
Semi-Constrained O(m+Y .cclc|) 987,500 0.10 0.21
Constrained O(m+|cx|+Leecle)’ 6,791,000 0.08 0.26

Table 4.1 Results obtained with the baseline model presented in Section 3.4.1 with varying
completion strategies for MultiWOZ. The Token Complexity and Effective Token Usage
columns exclude the tokens consumed by the in-context example retrieval component, as
its contribution is comparatively negligible. "In practice, as discussed in Appendix C, the
complexity is O(Y.cc |c|m).

Completion Strategy \ Effective Token Usage \ AJA AVG Intent Acc. Req. F1

Unconstrained 4,898,000 0.12 0.09 0.19 0.87
Semi-Constrained 7,683,000 0.17 0.36 0.70 0.87
Constrained 56,023,000 0.15 043 0.79 0.87

Table 4.2 Results obtained with the baseline model presented in Section 3.4.1 with varying
completion strategies for SGD. The resulting metrics are only reported for the "all" category.
The "Token Complexity" column is omitted for conciseness as its values are unchanged from
the ones indicated in the results for MultiwQOZ (Table 4.1).

4.1 Completion Strategy

Across all experiments, to mitigate the impact of disallowed completions on DST performance
when using unconstrained and semi-constrained completions, we filter all model output that
is not allowed by the given datasets. For example, if the GPT-3 output for an SGD dialogue
includes a slot that is not define in the schema, then that slot is removed from the output. For
instance, if the schema defines the set of requestable slots as {is_vegetarian, is_pet_friendly }
but the model output is Requested Slots: is_vegan, is_pet_friendly, then the output is cleaned
such that the unallowed slot is removed; therefore, in the above example, the resulting cleaned
output would be Requested Slots: is_pet_friendly, where the slot is_vegan is removed as it
is not in the schema. This improves performance because the datasets’ metrics implicitly
measure both sensitivity and specificity and, therefore, misnaming or mislabelling a slot
leads to an increase in both false positives and false negatives. While we did experiment with
detecting if the slot name could be mapped to one of the allowed slot names by building a
classifier that leveraged the semantic similarity of the generated slot name and each of the
natural language names or description of the allowed slot names, the improvement in DST
performance was negligible and the method required to train a classifier, which defeats the

purpose of the nimble few-shot method discussed in this dissertation.
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Scoring Function | AJA AVG

Z 0.08 0.26
AVG-Z 0.08 0.25
DC-PMI, 0.03 0.16
DC-PMI, 0.06 0.17
DC-PMI; 0.04 0.18

Table 4.3 Results obtained with a categorical completion strategies for MultiwOZ with
different scoring functions. Different priors are used for DC-PMI: for DC-PMI;, the domain
prior is just the completion (e.g. completion); for DC-PMI,, the domain prior is just last line
of the prompt (e.g "Slot Difference: is_vegetarian;" + completion); for DC-PMI3, the prior is
just the label name, as was done in the original papers (Brown et al., 2020; Holtzman et al.,
2021) (e.g. "Slot Difference: " + completion).

The results obtained by DST for MultiWOZ and SGD with different completion strategies
is shown in Table 4.1 and 4.2, respectively. While our expectation of a direct relationship
between increasing levels of constraint and higher performance generally held for SGD,
this was not the case for MultiWOZ, where unconstrained search performed better than
semi-constrained ones. Further analysis of the datasets and our in-context example retrieval
component led us to the realisation that many test-set dialogues are very similar to ones
present in the data we sample our in-context examples sets. That is, the target example’s
true labels are often the same to the ones in the selected in-context examples. Additionally,
injecting the possible values that the label can take into the unconstrained prompt to obtain
the semi-constrained prompt, leads to an average 48% increase in the number of tokens in
the prompt. These additional tokens, though, only confuse the model, which we conjecture
is then likely to distribute its attention across the whole prompt and therefore less on the
in-context examples’ labels, which are highly correlated with the target example’s true label.
In summary, the additional text introduced by the semi-constrained technique is often just

noise that distracts the model from the important information in the prompt.

4.1.1 Alternative Categorical Completion Scoring Function

As mentioned in Section 3.2, while selecting completions based on likelihood maximisation
(.Z) is the most popular completion strategy (Brown et al., 2020), it is not the only way:
different types of constraint completions selection strategies exist. Table 4.3, juxtaposes
£ with per-token average likelihood (AVG-.¢’) and DC-PMI. Per-token average likelihood
achieves similar, though slightly inferior, results to .Z’; this is because most completions are

of similar lengths (3-5 tokens) and therefore normalising by length has little effect overall. On
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the other hand, DC-PMI, contrary to the original authors’ claims (Holtzman et al., 2021) that
DC-PMI induces increased performance across numerous NLP tasks and does not otherwise
damage it, regardless of the type of prior selected, leads to notably lower performance.
While categorical completions generally outperform other techniques across our experi-
ments (Tables 4.1 and 4.2), due to them not being provided natively by the OpenAl GPT-3
Beta and therefore requiring our proposed workaround to work, the token usage (and therefore
cost) of such methods is much higher, as indicated in by the column "Effective Token Usage"
in Tables 4.1 and 4.2. Therefore, for future experimentation we adopt semi-constrained com-
pletions as they are an order of magnitude more token-efficient than constrained completion
and are higher performing than the unconstrained completions; moreover, this choice of
completion strategy has theoretical justifications as it is not susceptible to surface-form errors

(Holtzman et al., 2021), as discussed in Section 3.2.

4.2 Prompt Programming

While a similar effort could have been spent tuning the hyperparameters of GPT-3!, we
decided to focus on the prompt instead. The motivation for such a decision is that we believe
GPT-3 is just one in many larger language models to come and contributing to findings
regarding effective prompt programming techniques is more likely to be transferable across
present and future language models. In support of such hypothesis is the recent growing
interest in this line of work(Brown et al., 2020; Liu et al., 2021b; Petroni et al., 2019;
Reynolds and McDonell, 2021; Schick and Schiitze, 2020a).

4.2.1 Instruction

Brown et al. (2020) recommend providing a natural language description of the task at
hand, as it reportedly generally leads to improved downstream performance. Across all
our experiments, though, it was clear that it had little to no influence on the performance
(Table 4.1). A few different formulations of the instruction were provided and each had
no perceptible impact on performance. If we take an information theory (Brillouin, 2013)
perspective, this suggests that the instruction carries not much more information than is
already present in the prompt. This is either because GPT-3 has not come across the concept of
DST enough in pretraining to have an understanding of it, or because the prompt description

carries a negligible amount of information relative to the in-context examples. In support

'Such as temperature, Top P, Frequency Penalty, Presence Penalty, Best Of, etc. These are not discussed in
this dissertation, as they are disabled in our experiments. For more details, refer to the Beta’s documentation
https://beta.openai.com/docs/introduction.
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Instruction Type \ AJA AVG

None 0.10 0.21
Short 0.09 0.21
Long 0.10 0.21

Table 4.4 Results obtained with the baseline model presented in Section 3.4.1 with different
type of instructions. Instructions are natural language descriptions that can be prepended to
prompts that serve as a task specification designed to improve performance. Here are the
experimental results with three different instruction types: None=""; Short="this program
does dialogue state tracking"; Long="this is an example of dialogue state tracking: the goal
is to extract the active intent, indicating what the user is trying to do; the slots the user is
requesting; and the goal difference, or the slot-value pairs mentioned in the dialogue in the
current turn". In the case of DST, different instruction types have little to no effect on the
performance.

Question: What is Dialogue State Tracking?
Answer: This is the process of the state tracking that occurs between the NCS and the SCF.

Question: What is Dialogue State Tracking?

Answer: Dialogue State Tracking is a new feature in SCCM 2012 R2 that has been added to
monitor the state of each task sequence step. If a step has failed or is currently in a pending
state, the overall task sequence state is shown as Failed.

Question: What is Dialogue State Tracking?
Answer: I don’t know.

Fig. 4.1 The following are examples of how GPT-3 answers when asked about DST. These
completions were the first three completions generated by GPT-3 with temperature set to 0.7.
In the first two cases, the completions are inaccurate and in the third, the completion is an
admittance of lack of knowledge.
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Fig. 4.2 Results obtained by varying the number of in-context examples and their order for
MultiWOZ. Ascending order indicates that the in-context examples are ordered in ascending
order of similarity. The DST performance improves as the number of in-context examples
improves, as the model can leverage more information to make the correct predictions.
Moreover, generally, across experiments, the performance improves when the examples are
provided in ascending order, as this order exploits the recency bias inherent to GPT-3.

of the former hypothesis Figure 4.1, shows that when GPT-3 is prompted with a request for
an explanation of DST, it generates incorrect explanations or acknowledges its ignorance
of it. We believe both hypotheses play a role in such findings: firstly, the term DST is both
uncommon and inherently ambiguous, with a different meaning for each dataset, leading
GPT-3 having an uncertain/unformed understanding of it and, therefore, any description of
such term is largely less informative than any explanation via examples. For that reason,
even when a natural language instruction is provided, the model ignores it and instead pays

attention to the examples instead.

4.2.2 In-context Examples

Now that we have established that in-context examples are the most informative part of the
prompt, we proceed with ablative studies in an attempt to better understand how to optimise

the design of our system and draw some general prompt design guidelines.
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Number and Order

In line with a number of GPT-3 prompt programming studies Brown et al. (2020); Liu
et al. (2021a); Lu et al. (2021); Zhao et al. (2021), we found increased performance as the
number of in-context examples increases, as shown in Figure 4.2. This is obvious if seen
through its parallelism to classical machine learning: more training data generally correlates
with higher test set performance. Similarly, we would expect this to be true up to a certain
limit, whereafter if the data is selected according to the most similar semantics to the target
example, we could experience overfitting. Due to the limited prompt size, which implicitly
limits the number of in-context examples which can be provided, we did not observe the
overfitting crossover point, so we do not experience a decline in performance even at 5
in-context examples.

Similarly, confirming previous findings (Lu et al., 2021; Schick and Schiitze, 2020b;
Zhao et al., 2021), we found that GPT-3 is highly sensitive to the order of the in-context
examples: that is, permuting the order of the in-context example led to significant differences
in performances. Specifically, we found that providing the in-context examples in descending
order of similarity, where the least similar example is presented last, led to a decrease in
performance compared to the ascending order. This is likely due to GPT-3’s recency bias
(Holtzman et al., 2021): more attention is paid to the tokens closest to the end of the prompt.
This behaviour was learned during pretraining, where most documents are unstructured
text where a token’s occurrence is highly correlated with its immediately surrounding ones.
Therefore, in a highly structured seq-2-seq task such as DST, this bias, a leftover artefact
from pretraining, can be exploited by providing the most similar examples last, biasing the

model to pay more attention to the more similar examples.

Example Selection Policy: Diversity

To confirm our hypothesis that selecting in-context examples based on similarity is effective
and to examine if the model could perhaps benefit from diversity in the in-context examples,
we experimented with providing a mix of the k in-context examples: k, random examples and
then k; similar examples, such that k = k, 4 k. The k, random examples are sampled from
the whole training set. The idea behind introducing diversity in example selection is to avoid
providing very similar examples and GPT-3 being overly sensitive to them and, for example,
Just copying the labels. In practice, we found that introducing diversity in example selection
generally degrades performance (Figure 4.3), confirming our hypothesis that the model is
not overfitting to the in-context examples and that, in our case, selecting the examples most
similar to the target example is the optimal strategy.
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Fig. 4.3 Results obtained by varying the number of in-context examples and the amount of
diversity. Higher values of &, indicate higher levels of diversity. When k = k,, all in-context
examples are randomly selected. Across all experiments, for equal values of k the lower the
value of k,, the higher the performance; this indicates that when the value of k is constrained,
for example when the prompt length is limited, it is best to select the examples such that
they are as similar as possible and the introduction of diverse examples only degrades the
performance.
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Prompt Sharing \ AJA AVG Intent Acc. Req. F1

v 0.17 0.36 0.70 0.87
0.17 0.37 0.70 0.87
Table 4.5 Results obtained with the baseline model presented in Section 3.4.1 and a model
that does not employ prompt sharing, and each task (Active Intents detection, Requested Slot
extraction and slot-value pair extraction) are performed in parallel, where each is completed
by providing a separate prompt to GPT-3.

Model | AJA AVG

GPT-3(S) | 0.10 0.21
GPT-3(M) | 0.08 0.19
GPT-3(L) | 0.09 0.23
GPT-3(XL) | 0.09 0.22
Table 4.6 Results showcasing the performance of few-shot DST on MultiWOZ with varying
GPT-3 model sizes. It is apparent that increasing model size does not necessarily increase
DST performance.

4.2.3 Prompt Sharing

In SGD, it is possible to break down the task of DST into active intent classification, requested
slot classification and slot-value pair extraction. Across our experiments, we perform these
tasks in sequence, feeding the outputs of the previous predictions to future tasks. This method,
first proposed by Liu et al. (2021b), known as prompt sharing, has only been theorised but
has reportedly never been evaluated in practice (Liu et al., 2021b). Table 4.5 shows that in
the case of SGD, we found no noticeable difference between using prompt sharing or not.
This is because each subtask is significantly different from the others, such that any extra
leverageable information, such as the correlation between labels, is counterbalanced by the
extra noise that is introduced.

4.3 Model Size

Brown et al. (2020) report that the model performance increases as the number of parameters
in the model increases. Throughout their paper, they compare the performance of differently
sized models and repeatedly find that larger models perform better. Our empirical results,
reported in Table 4.6, show that for DST the relationship is not that clear: for AJA, we see the
smallest model actually performs best; for AVG, we found the order of the models sorted by
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Fig. 4.4 Results obtained by varying the number of in-context examples with three different
model sizes (S, M and L) for the SGD dataset. This plot confirms the trend observed and
reported in Table 4.6: larger models are not always better than the smallest models. Moreover,
unlike the original GPT-3 paper (Brown et al., 2020), we do not observe a larger increase in
performance as the number of in-context examples grows for larger models compared to the
smaller models. Instead, the improvement seems to remain constant across model sizes.

ascending order of performance is M, S, L, XL. This indicates that sometimes larger models
do not increase performance and can even degrade it.

Moreover, Brown et al. (2020) reported that larger models show larger increases in
performance as the number of in-context examples increases, as larger models are better
capable of leveraging more examples. Again, we found that this was not evident for DST, as
shown by our empirical results, presented in Figure 4.4. This could be because the maximum
number of in-context examples provided was not high enough for the difference to be visible.

4.4 Prompt Ensembling

As shown in Figure 4.5, ensembling prompts, as described in Section 3.3, leads to increased
performance. Figure 4.5 also shows that while using exclusive sampling leads to higher
performance than inclusive sampling for smaller ensembles, when the number of prompts
in the ensemble increases beyond 7, the inclusive sampling outperforms the exclusive one.
More specifically, the performance of the ensemble that uses exclusive sampling actually
deteriorates when the ensemble size reaches 9. The reason for both of these phenomena is that

the in-context examples are sampled with probability proportional to their similarity to the
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Fig. 4.5 Results obtained by varying the prompt ensemble’s size applied to the MultiwOZ
dataset. The results are shown for two different ensembles each using a different in-context
selection sampling method (inclusive and exclusive), as described in Section 3.3. Inclusive
sampling leads to worse results when the size of the ensemble is small, but the performance
plateaus surpassing the exclusive sampling technique, whose performance starts deteriorating
after 7 prompts in the ensemble.

target example and in the case of exclusive sampling, once an example is selected, it cannot
be sampled again for this target example; therefore, when the size of the ensemble increases
the average similarity of the in-context examples with the target example decreases. This is
addressed by inclusive sampling where the average similarity remains constant as the size of
the ensemble increases as different prompts in the ensemble can share in-context examples.
Conversely, when using inclusive sampling, the performance is lower than exclusive sampling
for small ensemble sizes because it is more likely that the different prompts

The reason why this technique particularly is good is that when doing few-shot DST the
system tends to hallucinate: it predicts slots, values and intents that are not mentioned in the
dialogue and, in some cases, that are not even allowed by the datasets’ schemas. Our studies
show that most of these hallucinated values are highly related to the content in the in-context
examples. For example, if one or more of the context examples report a date slot, the target
example is likely to pick up on the trend and predict the date slot as active and hallucinate a
value for it (e.g. copying the date presented in the above examples). By sampling multiple
in-context examples and allowing each model to vote on the predictions, the hallucinations
tend to be sifted out, only leaving the factual predictions in.
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Model | AJA AVG
GPT-2 (Pezzotti, 2021) 0.50 -
SimpleTOD (Hosseini-Asl et al., 2020) | 0.56 -
UBAR (Yang et al., 2020) 0.56 -

GPT-3 (S) 0.53 0.81

GPT-3 (M) 0.50 0.81

GPT-3 (L) 0.52  0.82

Table 4.7 Results obtained by fine-tuning different distilled models of GPT-3 to the task
of MultiwOZ end-to-end DST. The results for GPT-2, SimpleTOD and UBAR are taken
from the work done by Pezzotti (2021), Hosseini-Asl et al. (2020) and Yang et al. (2020),
respectively. These do not report slot average accuracy (AVG). UBAR and SimpleTOD are
trained on different data: mainly, they additionally use the previous predicted belief states
and system response. These results are not indicative of the true potential of a fine-tuned
GPT-3 model for DST. This is because our access to the fine-tuning capabilities of GPT-3
were very limited: in fact, no hyperparameter tuning could be performed and the results
could not be reported for SGD. Moreover, the finetuning feature of the OpenAl API is just in
Alpha, and therefore, reportedly, has a lot of space for improvement.

Amongst all experimental findings in the dissertation, we view these as the most notewor-
thy: not only are the performance increases for DST clear, but also we see this as the most
widely adaptable technique studied in this thesis as it can be applied to all types of prompts
if more data is available.

4.5 Fine-tuning

To get a better understanding of GPT-3’s DST capabilities, we fine-tuned three GPT-3 models
of varying sizes. Specifically, the model sizes are S, M and L; the largest GPT-3 model (XL)
was not fine-tuned because this is not allowed by the OpenAl API yet.

The fine-tuning was done on the same dialogue representation as was done for the in-
context learners, except that the whole dialogue history was used rather than just the last
couple turns. The output label is the dialogue-level belief state. This was possible because
when the in-context examples are not included in the prompt, the dialogue history usually fits
within the prompt limit. In the cases where this was not the case and the prompt exceeded the
prompt limit, the dialogue history is pre-truncated: the dialogue turns within the history are
truncated in chronological order (the first dialogue turns are removed first) until the prompt

is within the limit.
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The results, reported for MultiWOZ in Table 4.7, show that the relationship between
size and performance is again not clearly direct, confirming the findings from section 4.3
that, for DST, there is a Goldilocks zone for model size. The results show that, while fine-
tuning is expensive, it generally leads to increase performance as it is capable to leverage
the full labelled dataset. Moreover, fine-tuning is notably simpler than in-context learning,
which requires sophisticated prompt programming techniques just to obtain functional results.
These results are still inferior to those achieved by SimpleTOD (Hosseini-Asl et al., 2020)
and UBAR (Yang et al., 2020). Interestingly, GPT-3 outperforms GPT-2, fine-tuned in an
analogous way, by a comfortable margin in the case of the of the small and large model. This
confirms the trend observed by Brown et al. (2020), where GPT-3, due to its larger modeling

capacity and increased pretraining dataset size, reliably outperforms the smaller GPT-2.






Chapter 5

Conclusion

5.1 Summary

This dissertation provides contributions to both DST and the use of GPT-3 in general.

For the field of DST, we show that GPT-3 is capable of doing basic-level DST in
a few-shot setting, though it is far from perfect and generally achieves sub-competitive
performance. This is because the task is inherently ambiguous and complex and, therefore,
it is hard to accurately capture the essence of it from just a few in-context examples. This
weakness becomes apparent when the performance of the few-shot in-context learning model
is compared to that of the much simpler yet more effective fine-tuned GPT-3 DST model. On
the other hand, compared to fine-tuning large language models, few-shot DST is much more
computationally and space-efficient; mainly, there is no need to create, host and maintain
an additional GPT-3 model. Regardless, while it seems that currently few-shot DST cannot
achieve performance competitive with other state of the art traditional DST models, we
believe that, as the research of large language models advances and our understanding of
effective prompt programming techniques improves, it could become a viable approach.

We believe the noteworthy contributions made by this dissertation instead lay the learnings
in attempting such a complicated task in a few-shot setting. In particular, recapitulating what

already presented above, our contributions are the following:

* We formalise the distinction between constrained, semi-constrained and unconstrained
completion strategies, as well as provide an empirical analysis of the DST performance
of the three methods. Furthermore, for constrained completions, we compare the per-
formance of different scoring functions, demonstrating that, for DST, .Z outperforms
both average likelihood and DC-PMI.
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* We demonstrate that for DST, selecting the most similar examples is more effective

than random selection of examples.

* We present a novel prompt ensembling technique, which is capable of mitigating

language model hallucination and enhancing downstream performance.

* We perform ablative analyses of the prompt templating which give insight into how
GPT-3 works and what a good prompt looks like. This included validating GPT-3’s
in-context example order sensitivity, its recency bias and the resulting performance
improvement that can be obtained if these are exploited effectively. Additionally, we
confirm previous findings indicating that the downstream performance improves as
the number of in-context examples increases. We also demonstrated that, for DST,
the general recommendation of prepending a natural language task description to the
prompt has no effect on the downstream performance. Finally, we demonstrated that
the relationship between model performance and model size is not so clear, as some

larger models actually performed worse than their smaller counterparts.

* We are the first to experiment with prompt sharing, demonstrating that in the case of

DST, it is not any more effective than performing each task separately or in parallel.

e We are the first to fine-tune GPT-3 for the task of DST on the MultiWOZ dataset,
showing that it outperforms GPT-2 by a comfortable margin and that the smaller
distilled versions of GPT-3 perform just as well if not better than the largest GPT-3
models, in the fine-tuning setting.

5.2 Future Steps

As language models become larger in size, we expect it to become infeasible to have a
separately fine-tuned model for every task or individual application. For that reason, we
believe that techniques such as prompt tuning (Shin et al., 2020), demonstrated to be effective
for many tasks, also show promise for DST. This was not attempted in this dissertation
because it is not possible to do via OpenAI’s GPT-3 API: specifically, we do not have access
to the internal model parameters.

Amongst all the novel in-context learning techniques proposed in this dissertation, we see
promise in the prompt ensemble method. We believe this is an effective technique to reduce
hallucination and improve performance across any few-shot in-context learner. Looking
at different techniques for generating the prompts in the ensemble is likely to lead to even

greater performance gains.
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We also would like to pursue the research direction of fine-tuning GPT-3 with methods
previously shown to be effective at DST such as SimpleTOD (Hosseini-Asl et al., 2020)
and UBAR (Yang et al., 2020). This would be a straightforward effort for MultiwOZ and
would likely lead to competitive if not state of the art results. Pairing the above methods with
different completion selection strategies, such as categorical completions which by design
can only improve performance, would likely lead to even higher performance.

Furthermore, we think it would be interesting to seek to further understand why increasing
model sizes does not result in increased performance for DST. This is quite anomalous
behaviour compared to that observed in other tasks that GPT-3’s (Brown et al., 2020). This
would require further experimentation, ablative studies and qualitative analysis of the different
models’ outputs. Moreover, it would be a valuable contribution to explore these and all other

prompt programming findings on other datasets and tasks.
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GPT-3: a Chatbot with a Personality
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The following is a conversation with John, a cynical person convinced he is living in a
simulation.

Me: Hello, how are you?

John: I'm fine. It’s just a game we play, you know?

Me: OK... What do you mean by ’It’s just a game we play’?

John: Don’t you see? The game is a simulation of planet earth with a number of individuals
with some degree of free will. The simulation runs long enough for it to appear as if it is the
real world and then it restarts.

Me: How do you know this?

John: It seems pretty obvious if you think about it.

Me: If it’s so obvious how come others don’t get it?

John: You have to be at least a little bit cynical and you have to question everything.
Everybody else is a sheep

The following is a conversation with Gandhi.

Me: Hello, how are you?

Gandhi: I am well, thanks. How are you?

Me: Me too, thanks. Let’s start the interview. I would like to know what the meaning
of life is according to you?

Gandhi: For me the meaning of life is service to others.

The following is a conversation with Stephen Hawking.

Me: Hello, how are you?

Hawking: I am well, thanks. How are you?

Me: Me too, thanks. Let’s start the interview. I would like to know what the meaning
of life is according to you?

Hawking: The universe exists without meaning. However, we are free to choose a value of
our own. It’s up to you and me to decide what that value is going to be. I think the purpose
of life is the choice of values.

Fig. A.1 The following are examples of how GPT-3 can autoregressively generate text
conditioned on a prompt (i.e. prompting). The prompt is indicated by bold characters, and
the completion are in light. In the first example GPT-3 is prompted with a description of the
type of conversation and a persona description. In the latter two, the persona description is
inferred from its knowledge learned during pretraining about the given individual. Clearly
GPT-3 knows what a conversation is and who the individuals are. From this, it is capable of
predicting what the persona/individual would have replied given those starts of conversations.
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GPT-3 Per Token Pricing Model

Model Size
S M L XL

$/1k tokens \ 0.0008 0.0012 0.0060 0.0600
Table B.1 Prices are per 1,000 tokens, where 1,000 tokens is about 750 words. The model
sizes S, M, L and XL are called Ada, Babbage, Curie and Davinci by OpenAl Brown et al.

(2020) and are estimated to have the following number of parameters respectively: 2.7B,
6.7B, 13B and 175B Hendrycks et al. (2020).







Appendix C

Categorical Completions

Ideally, the API would cache repeated requests, such that every time we need to compute
p(c|ty.m) for each value of ¢ € C, we need not to recompute p(t,11|t1.x) for all values of
x € [1,m]. If this caching were implemented the token complexity of requests for categorical
completions would be ®(m + |c1|) for the first completions, where m is the token length
of the prompt and |c;| the token length of the first completion; for every other completion
the cost would be ©(|c,|), or just the token length of the completion. Overall, the token
complexity would therefore be @(m+ Y .cc|c|) -

In practice, this is not supported by the API and for each completion the model needs to
reprocess the prompt leading to a token complexity of @(Y..cc|clm) = O(|Clm+ Y ccc|c]).
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AJA AVG
Completion Strategy
Unconstrained 0.09 0.24
Semi-constrained  0.09 0.21
Constrained 0.08 0.26
Scoring Function
AVG-Z 0.08 0.25
DC-PMI,; 0.03 0.16
DC-PMI, 0.06 0.17
DC-PMI3 0.04 0.18
Instructions

Short 0.10 0.21
Long 0.10 0.21

# of In-Context Examples (Ascending Similarity), k, = 0
1 0.08 0.18
2 0.10 0.21
3 0.10 0.22
4 0.09 0.22
5 0.09 0.24

# of In-Context Examples (Descending Similarity), k, =0
1 0.08 0.18
2 0.09 0.20
3 0.09 0.21
4 0.09 0.22
5 0.09 0.23

# of In-Context Examples (Ascending Similarity), k, = 1
1 0.00 0.03
2 0.07 0.16
3 0.08 0.19
4 0.09 0.20
5 0.09 0.21

# of In-Context Examples (Ascending Similarity), k, =2
2 0.00 0.03
3 0.06 0.14
4 0.07 0.19
5 0.08 0.23

Model Size

M 0.08 0.19
L 0.09 0.23
XL 0.09 0.22

# of In-Context Examples (Ascending Similarity), k, = 0, size = M

1 0.04 0.13
2 0.08 0.19
3 0.09 0.22
4 0.09 0.21
5 0.09 0.23
# of In-Context Examples (Ascending Similarity), k. = 0, size = L
1 0.08 0.18
2 0.09 0.23
3 0.10 0.24
4 0.10 0.25
5 0.10 0.27
Ensemble Size
1 0.10 0.21
3 0.06 0.23
5 0.09 0.25
7 0.08 0.28
9 0.08 0.26

Table D.1 All the experimental results reported for MultiWOZ in tabular form. The terminol-
ogy used and the discussion of the results is presented in Chapter 4.
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AJA AVG Intent Acc. Req. F1
Completion Strategy
Unconstrained  0.12  0.09 0.19 0.87
Semi-constrained 0.17 0.36 0.70 0.87
Constrained 0.15 043 0.79 0.87
Scoring Function
AVG-¥ 0.14 041 0.81 0.87
DC-PMI, 0.09 041 0.79 0.87
Instructions

Short 0.16 0.35 0.69 0.87
Long 0.16 0.35 0.69 0.87

# of In-Context Examples (Ascending Similarity), k., =0
1 0.15 0.30 0.70 0.87
2 0.17 0.36 0.70 0.87
3 0.17 0.36 0.71 0.87
4 0.17 0.37 0.71 0.87
5 0.17 0.38 0.71 0.87

# of In-Context Examples (Descending Similarity), k. = 0
1 0.15 0.30 0.66 0.87
2 0.16 0.36 0.70 0.87
3 0.16 0.36 0.70 0.87
4 0.16 0.37 0.70 0.87
5 0.17 0.38 0.71 0.87

# of In-Context Examples (Ascending Similarity), k, = 1
1 0.09 0.03 0.42 0.87
2 0.14 0.30 0.67 0.87
3 0.16 0.34 0.69 0.87
4 0.17 0.36 0.70 0.87
5 0.17 0.37 0.71 0.87

# of In-Context Examples (Ascending Similarity), k, =2
2 0.10 0.06 0.46 0.87
3 0.14 0.32 0.62 0.87
4 0.15 043 0.79 0.87
5 0.17 0.35 0.69 0.87

Model Size
M 0.16 0.43 0.70 0.87
L 0.18 048 0.73 0.87
XL 0.20 0.50 0.75 0.87
Prompt Sharing
v 0.17 0.36 0.70 0.87
0.17 0.37 0.70 0.87
Ensemble Size

1 0.17 0.36 0.70 0.87
3 0.14 0.27 0.67 0.87
5 0.15 0.25 0.67 0.87
7 0.14 0.24 0.68 0.87
9 0.14 0.23 0.68 0.87

Table D.2 All the experimental results reported for SGD in tabular form. The results are
reported for the "all" all category. The terminology used and the discussion of the results is

presented in Chapter 4.
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AJA AVG Intent Acc. Req. F1
Completion Strategy
Unconstrained  0.21 0.34 0.65 0.86
Semi-constrained 0.26 0.48 0.82 0.86
Constrained 0.23 0.54 0.86 0.87
Scoring Function
AVG-& 0.21 0.50 0.86 0.86
DC-PMI; 0.12 043 0.89 0.86
Instructions

Short 0.24 047 0.82 0.86
Long 0.24 047 0.81 0.86

# of In-Context Examples (Ascending Similarity), k, =0
1 022 041 0.78 0.86
2 0.26 048 0.82 0.86
3 0.28 0.50 0.83 0.86
4 0.27 0.50 0.83 0.86
5 0.28 0.51 0.83 0.86

# of In-Context Examples (Descending Similarity), k, = 0
1 022 041 0.78 0.86
2 0.24 047 0.82 0.86
3 0.25 047 0.83 0.86
4 0.26  0.49 0.83 0.86
5 0.27 049 0.83 0.86

# of In-Context Examples (Ascending Similarity), k, = 1
1 0.08 0.03 0.56 0.86
2 0.20 040 0.80 0.86
3 0.26 047 0.83 0.86
4 0.28 0.50 0.83 0.86
5 0.27 0.50 0.84 0.86

# of In-Context Examples (Ascending Similarity), k, =2
2 0.10 0.07 0.58 0.86
3 022 042 0.77 0.86
4 0.23 054 0.86 0.86
5 0.28 0.49 0.83 0.86

Model Size
M 0.23 048 0.81 0.86
L 0.26 0.51 0.82 0.86
XL 029 0.52 0.81 0.86
Prompt Sharing
v 0.25 047 0.08 0.86
026 048 0.82 0.86
Ensemble Size

1 0.26 048 0.82 0.86
3 022 040 0.80 0.86
5 0.22 0.39 0.81 0.86
7 0.21 0.39 0.82 0.86
9 0.22 0.39 0.80 0.86

Table D.3 All the experimental results reported for SGD in tabular form. The results are
reported for the "seen" all category. The terminology used and the discussion of the results

is presented in Chapter 4.
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AJA AVG Intent Acc. Req. F1
Completion Strategy
Unconstrained  0.10  0.01 0.04 0.88
Semi-constrained 0.14 0.31 0.65 0.88
Constrained 0.12 0.39 0.77 0.88
Scoring Function
AVG-¥ 0.11 0.37 0.79 0.88
DC-PMI, 0.08 041 0.75 0.88
Instructions
Short 0.13 0.30 0.65 0.88
Long 0.13 0.31 0.64 0.88
# of In-Context Examples (Ascending Similarity), k., =0
1 0.13 0.26 0.62 0.88
2 0.14 0.31 0.65 0.88
3 0.13  0.31 0.66 0.88
4 0.13 0.33 0.67 0.88
5 0.13 0.34 0.67 0.88
# of In-Context Examples (Descending Similarity), k. = 0
1 0.13 0.27 0.62 0.88
2 0.14 0.31 0.66 0.88
3 0.13 0.31 0.66 0.88
4 0.13 0.33 0.66 0.88
5 0.13 0.34 0.66 0.88
# of In-Context Examples (Ascending Similarity), k, = 1
1 0.10 0.03 0.38 0.88
2 0.12 026 0.63 0.88
3 0.13 0.29 0.64 0.88
4 0.14 0.31 0.65 0.88
5 0.14 0.32 0.66 0.88
# of In-Context Examples (Ascending Similarity), k, =2
2 0.10 0.05 0.41 0.88
3 0.12 0.28 0.56 0.88
4 0.12 0.39 0.77 0.88
5 0.13  0.30 0.65 0.88
Model Size
M 0.13 042 0.67 0.88
L 0.15 047 0.70 0.88
XL 0.17 0.49 0.70 0.88
Prompt Sharing
v 0.14 0.33 0.07 0.88
0.14 0.31 0.65 0.88
Ensemble Size
1 0.14 0.31 0.65 0.88
3 0.11 0.23 0.63 0.88
5 0.12 0.21 0.63 0.88
7 0.12 0.19 0.63 0.88
9 0.12 0.18 0.63 0.88

Table D.4 All the experimental results reported for SGD in tabular form. The results are
reported for the "unseen" all category. The terminology used and the discussion of the results

is presented in Chapter 4.
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