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Abstract

Rationally designing proteins in silico has the potential to unlock treatments for myriad
diseases, hasten scientific discovery, and enable a green revolution in manufacturing. While
this dream has existed for decades, the last few years have seen unprecedented progress
towards this goal as powerful machine learning techniques have been applied to large, high-
quality datasets. Within the last year, diffusion models, a particular kind of generative
machine learning model, have enabled great advances in designing novel proteins [39].

Here, we build off the recent advancements in diffusion models to introduce a new
diffusion model specifically built to generate fragments of proteins that bind to a particular
part of a molecule called an epitope [42]. We explore how this model performs in generating
the complementarity-determining regions (CDRs) of antibodies, important biomolecules that
have many uses in healthcare and scientific technologies. This is an especially difficult task
due to the flexibility and diversity of CDR loops, coupled with the relatively small amount
of structural data. We demonstrate that our diffusion model is capable of generating novel
CDRs that obey biophysical constraints. We also develop a suite of metrics, including a new
proof-of-concept using the confidence of an auxiliary masked sequence model. These metrics
show that these CDRs appear to be conditioned on the epitope to some degree. Having
demonstrated the utility of this model, we noticed a lack of rigorous assessment of which
components impact model performance the most. Therefore, we sought to fill this gap by
breaking apart our model piece by piece to determine which components most strongly
contribute to the model’s accuracy. We observed key components in both the construction of
the model as well as in the design of the diffusion process that impact model performance. We
compare our model on SAbDab, the most common benchmark in the field, and demonstrate
that certain common metrics may not be good indicators of structural quality. Finally, we
introduce the AbAg dataset of protein fragments and show that this additional data can
dramatically boost performance compared to SAbDab alone. In this way, we hope this work
can serve as a guide for future scientists developing diffusion models for protein design.
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Chapter 1

Introduction

1.1 Motivation and Overview

Proteins play a role in almost every function of life. Being able to quickly and accurately
design new proteins to carryout different tasks would unlock a vast array of new medical
treatments and enable previously unimaginable technologies through synthetic biology. In
particular, designing proteins conditioned to bind to a given epitope has important therapeutic.
For example, antibodies are widely used as treatments for myriad diseases and especially
cancer, due to their ability to recognize a specific molecule and then recruit the body’s
immune system.

Diffusion models have recently emerged as powerful tools for designing protein structures
[39, 4, 29, 41, 37, 27]; however, conditioning these models on a specific task remains a
challenge. Moreover, the explosion of interest in protein design with diffusion has outpaced
the systematic analysis of the features that tend to make certain models perform better than
others.

Therefore, we were motivated by two main questions:

1. Can we build a diffusion model to design the regions of antibodies that are primarily
responsible for binding?

2. In the process, can we empirically demonstrate some best practices for protein diffusion
models by systematically benchmarking the effect of various design choices?

1.2 Main Contributions

The primary contributions of this dissertation are the following:
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• Development of a unique model to generate structures of novel antibody complementarity-
determining regions that are conditioned to bind to an epitope.

• Thorough analysis of the how different components such as positional embeddings
might improve performance.

• An analysis of whether diffusion models might be able to find the correct location on
an epitope to bind by allowing the process to not be centered.

• Experimentation to determine which noise schedules and range of noise work best for
both rotations and translations.

• Analysis of a model trained only on SAbDab and a demonstration that pretraining on a
separate dataset of protein fragments can significantly boost performance.

• A proof-of-concept that the confidence of masked sequence model trained on protein
structures can, in certain settings, be indicative of the likelihood of the structures
binding.

1.3 Outline

The dissertation is structured as follows:

Chapter 2 We introduce the importance of protein design and key biochemical concepts
which are necessary to understand what components of a protein structure must be generated.
We introduce our datasets as well as our key metrics for both the physical plausibility of
the generated structures as well as novel metrics to assess whether these structures are
conditioned on the epitope. We introduce a proof-of-concept for a new metric based on the
confidence of a deep learning model. We conclude by introducing a high-level overview of
graph neural networks, specifically SE(3)-Equivariant Message Passing Neural Networks.

Chapter 3 We derive the fundamentals of diffusion models, explaining and connecting
the continuous and discrete formulations. We then build on that framework to introduce the
necessary changes that need to be made to carry out diffusion on protein structures.

Chapter 4 We first delve into the performance of our base model, demonstrating the high
quality of the generated structures. We then systematically study which components of the
model contribute to its performance with the hopes of guiding the generative modelling
community on best practices for these kinds of diffusion models.



1.3 Outline 3

Chapter 5 We continue the analysis of what makes these models perform well; however,
it focuses on the noising process of the diffusion. We describe the connection between
translations and rotations, we study how the model performs for both translations and
rotations as a function of the amount of noise applied to the structure. Then, we empirically
assess different noising schedules and different ranges for the noise, providing insight into
the optimal configurations for diffusion models.

Chapter 6 We shed light on a common problem in designing models for biology: a lack of
large, high-quality, diverse datasets. We demonstrate that training on SAbDab alone, which
currently is common practice in the antibody design community, may generated structures
with good RMSD but poor structural quality. We also show that pretraining on the AbAg
not only recovers structural quality but improves the metrics for binding probability. In this
way, we demonstrate that fragment datasets may be highly beneficial to future studies on
generative modelling for biology.

Chapter 7 We discuss exciting ways to build upon the findings of this dissertation as well
as the limitations of these experiments.





Chapter 2

Background

Chapter Roadmap We first introduce the importance and challenges of protein design
before delving into a high-level review of essential topics in biochemistry that are needed to
understand of the rest of this dissertation. We then introduce our specific task, predicting
antibody complementarity-determining regions (CDR) loops, and introduce the available
datasets. Building on this biochemical knowledge, we introduce metrics to evaluate whether
the generated CDRs have plausible structures and might bind to the epitope. Finally, we
introduce the formulations of graph neural networks that will be used in this project.

2.1 Fundamentals of Protein Design

Proteins are basic building blocks of all life, workhorses that carry out most cellular functions.
Their structural diversity and functional versatility enable them to participate in roles ranging
from catalyzing biochemical reactions to transmitting signals within and between cells.
Rationally designing proteins would give scientists and physicians incredible tools to develop
new medicines such as cancer treatments or vaccines. Meanwhile, synthetic biologists and
chemical engineers could use rational protein design to manufacture chemicals without
carbon emissions or toxic waste. As we unlock protein design, we unlock the potential to
reshape, enhance, and repurpose the fundamental building blocks of life itself.

Despite fifty years of effort, de novo protein design has remained difficult because proteins
are incredibly complex biomolecules whose functions and molecular interactions are not
yet fully understood. Therefore, designing proteins with a given function is both important
but also incredibly difficult. In 2020, AlphaFold2 (AF2) marked a tremendous advance in
biochemistry by providing a pragmatic solution to the first component of the protein folding
problem, a 50-year challenge of predicting a protein’s structure given only its sequence
[23]. AF2 marked a shift away from physics-based methods towards machine learning-based



6 Background

Fig. 2.1 Two amino acids bonded together, with the α-carbons and dihedral angles (φ , ψ , ω)
labelled.

approaches for solving challenges in biochemistry. In this dissertation, we will describe
the use of score-based generative models, a machine learning technique, to design protein
fragments conditioned to bind to a particular epitope.

2.1.1 Protein Structure

Understanding the basic elements of protein structure is crucial to building a machine learning
model to design novel proteins. Proteins are chains of amino acids (interchangeably called
residues). Amino acids contain an amide backbone, and then a side-chain protruding from
the Cα (Fig. 2.1). There are twenty different natural amino acids in humans, each with a
different sidechain bearing different physiochemical properties.

Therefore, for a protein sequence of length N, there are N20 possible unique sequences.
Proteins have a primary structure: its sequence, secondary structure based on small structural
motif, and then tertiary and quaternary structures as combinations of the smaller structural
elements. The smallest protein has a length of 11, which could have more than 204 quadrillion
sequences [17], but most proteins are between 50 and 500 amino acids [3]. While the potential
space of protein sequences is unfathomably large, relatively few sequences will form a stable
structure whereby the linear sequence folds into characteristic shapes, such as α-helices,
β -sheets, and loops. The hydrophobic effect drives much of protein folding into α-helices
and β -sheets, so their sequence composition is constrained [10]. In contrast, loops typically
interact with the solvent and are more flexible; therefore, there are fewer constraints on the
sequence identity of loops. Protein folding is driven by a few fundamental forces that act on
the amino acids in aqueous solutions and include the electrostatic interactions, the formation
of hydrogen bonds, Van der Waals interactions and the hydrophobic effect. These same
forces governing folding also govern protein-protein interactions.
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From the perspective of protein design with machine learning, there are elements of
protein structure that any generative model must learn. Amide bonds are quite strong, and the
distances between α-carbons lies in a very tight range of roughly 3.7-3.85 Å. Additionally,
as shown in Figure 2.1, there are degrees of freedom in the dihedral angles; however, only
certain combinations of the backbone angles will result in structures whose sidechains do not
physically clash.

2.1.2 Protein-Protein Interactions

Protein-protein interactions (PPIs) are governed by various underlying forces and factors that
contribute to the specificity, affinity, and stability of these interactions. Understanding these
forces is crucial to evaluating the proposed molecular binders the molecular mechanisms
behind PPIs.

Hydrophobic Interactions Hydrophobic amino acid residues tend to cluster together in
the interior of protein complexes, away from the surrounding aqueous environment [10].

Electrostatics Like in classic physics, positively and negatively charged, as well as polar,
residues, drive many interactions. For biomolecules, hydrogen bonding is a common and
important electrostatic interaction.

Van der Waals Interactions Van der Waals forces are weak attractive forces that arise due
to fluctuations in electron distribution. These forces contribute to the close packing of amino
acids at the protein-protein interface and aid in complex formation [32].

π-π Stacking Aromatic complexes can overlap such that their π molecular orbitals are
shared between the two structures, decreasing electron density. While less common at the
surface of proteins, it has been documented for antibody binding , and it is highly favorable
[6].

Shape Complementarity Protein fragments with complementary shapes and surface
features can fit together like puzzle pieces. While proteins can change conformations or a
molecule can be induced to fit into a groove, modifying the structure applies an entropic
penalty which makes binding less likely.



8 Background

Overall, these forces contribute to the change in enthalpy (∆H) of a reaction, which is
negative for binding. However, binding also constrains the ability of these molecules to move
or adopt different contributions, often causing the change in entropy (∆S) to be negative.
There is a notable exception if the interaction is driven by hydrophobicity, as in this case the
binding frees the water molecules around the complex, actually increasing the entropy of the
whole system. Therefore, binding reactions must strike a complex balance between forming
a highly stable complex (causing a large decrease in enthalpy), and preserving the entropy of
the original molecules. For a reaction to proceed, the overall change in Gibb’s free energy,
∆G = ∆H −T ∆S, must be negative. Therefore, the best binders will have complementary
shapes (so that ∆S upon of binding is small), and chemical features in the correct positions
such that the complex has many favorable interactions, decreasing ∆H.

2.2 Designing Antibodies

Antibodies play an incredibly important role in the body’s immune system, as B-cells can
use V/D/J recombination and somatic maturation to make specific antibodies against many
different potential antigens [33]. Antibodies have been repurposed by scientists to form
cancer therapeutics and other treatments [13]; the global market for therapeutic monoclonal
antibodies in 2018 was estimated at $115 billion [28]. Notably, antibodies, or antibody
fragments like nanobodies, can usually be safely administered in the body to bind to a target
molecule [1].

While novel antibodies for a target of interest can be obtained by immunization or by
laboratory-library construction and screening, doing so is time-consuming, expensive, and
has no guarantees of success [35]. Rationally designing antibodies in silico, therefore, is an
important task that will hasten the development of new and possibly better therapies.

Antibodies consist of four protein chains—two heavy chains and two light chains—arranged
in a Y-shaped structure, with variable regions at the tips responsible for antigen recognition.
Inside each variable region, the binding is mainly dictated by the complementarity determin-
ing regions (CDRs), flexible loops structures typically ranging between 6-20 amino acids in
length.

Due to its medical significance, this dissertation will focus on improving the binding of
antibodies by designing CDRs conditioned on an particular epitope.
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2.2.1 Datasets

SAbDab

The Structural Antibody Database (SAbDab) contains experimentally-determined 3D struc-
tures of real antibodies, often in complex with a given epitope [16]. All structures from
SAbDab were included, and then the CDRs of each antibody and the epitope were extracted.
The CDR-epitope complexes were first filtered for structural quality and resolution, and,
since many CDRs are highly similar in sequence, we removed CDRs with >90% sequence
similarity to other CDRs. After controlling for quality and diversity, 6804 complexes of
CDR and epitope remained. Previous work applying machine learning to generate CDRs has
focused on SAbDab despite its small size [29, 41]. Notably, to the best of our knowledge,
those studies also did not heavily filter SAbDab for quality or unique sequences.

AbAg

While SAbDab is a high-quality dataset of real CDRs, it is very small. The AbAg dataset,
introduced by Aguilar Rangel et al. [2], is a much larger dataset of interacting protein
fragments that are similar to antibody CDRs. The epitope-like-regions with which the CDR-
like-fragments interact are also extracted. Each entry in SAbDab thus contains a CDR-like
fragment that is similar to a real CDR, and a corresponding region that the CDR-like fragment
interacts with [2]. This dataset was used to rationally design CDRs using a combinatorial
approach, obtaining designed antibodies with some affinity to their target, suggesting that the
dataset does match key features of antibody CDRs.

To guarantee that the fragments are formed as part of a PPI, we filtered AbAg to include
only structures where the CDR-like fragment and epitope are on separate chains. This
resulted in 60,658 structures, approximately an order of magnitude larger than SAbDab.

2.3 Evaluation Metrics

Recent works on generative modelling for protein structure have focused on designing whole
proteins [39, 42, 37, 4, 27]. Because they focus on whole proteins, they are able to use AF2
to fold their proposed sequence and compare AF2’s prediction to the generated structure.

Designing protein fragments, especially fragments conditioned to bind to an epitope,
cannot be measured with this metric, or any individual metric. Therefore, we will use the
following list of metrics to evaluate the structural quality of the generated CDR structures.
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2.3.1 Structure Quality

Certain features of protein structures are conserved, such as the distance between α-carbons,
the distribution of the dihedral angles, and the angles between the carbons and nitrogens in
the amide backbone. Any atoms on either the CDR or the epitope should not get too close
together or they clash. To evaluate these metrics we adopt those used in AlphaFold2 [23]

Table 2.1 Metrics for Evaluating Structure Quality [23]

Metric Description

Structural Clash Flags if any atoms are closer together than the
sum of their Van der Waals Radii

Bond Angle Violation Flags if any of the bond angles in the backbone
differ from their mean literature values by >12
standard deviations

Bond Length Violation Flags if N-Cα , Cα -C’, or C′-N bonds differ from
mean literature value by >12 standard deviations

Clash Between CDR and Epitope Flags if any α-carbons of the CDR are ≤ 3.5
Åto any epitope CDR

2.3.2 Likelihood of Binding

Evaluating whether a CDR is conditioned to a particular epitope is very difficult. While
physics-based computational tools like Rosetta can compute a predicted ∆G, these models
are known to perform poorly on loops [40]. There are no highly accurate metrics in silico
tests for to predict whether a loop will bind to a structure. Nonetheless, there are certain
characteristics of a good binder. We describe the metrics below and provide a summary in
Table 2.2.

Similar to other studies [41, 29], we compute the RMSD of our structures to the structures
of real CDRs binding the same epitope. However, we would like to point out that the goal is
to generate novel structures, not to just replicate existing ones. There is a lot of degeneracy
in how antibodies bind a given epitope. In 2021, Raybould et al. shockingly found over
1131 unique antibodies that bound to COVID-19, often in the same specific epitope [30].
Therefore, the model should give some structures with a low RMSD to the groundtruth, but
some predictions are expected and desired to have high RMSD. A better metric may be
comparing the RMSD of a CDR compared to a CDR that was generated for a completely
different epitope, as that provides a gauge if the model’s output is conditioned on the epitope.
RMSD is a helpful metric but it should not be the sole focus.
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Additionally, the residues of real CDRs are positioned at different distances to the epitope.
(Fig. 2.2). Since binding is heavily dependent on distance, the generated CDRs should follow
this distribution. To evaluate this numerically, we calculate the Jensen-Shannon Distance
(Eqn. 2.1). √

D(P||M)+D(Q||M)

2
(2.1)

where D is the Kullback-Leibler Divergence and M is the mean of the distributions: M = P+Q
2 .

Fig. 2.2 The Minimum Distance Between any Cα in the epitope and the CDR.

Typically there is often a correct orientation in how the CDR should bind an epitope;
therefore, we compute the SVD of α-carbons to find the major axis of the CDR, and then we
compute the magnitude of the cosine similarity to the groundtruth CDR. Since CDRs are
roughly cylindrical, we compute only the similarity to the largest eigenvectors since the 2nd
and 3rd do not always align well.

Finally, motivated by the complete lack of models to evaluate whether a structure is
plausible or not, we hypothesized that the confidence of an auxiliary, an masked structure
model (MSM) trained to identify CDR sequence given their backbone, might be a suitable
metric. We propose measuring the confidence with the mean Shannon entropy of the
predictions for each residue of the CDR. Specifically we expect the entropy to increase when
worse CDR backbones are provided. Since this dissertation is focused on diffusion models,
we provide the empirical evaluations of this metric in A. Notably, the metric appears to be
sensitive to many corruptions of the CDR, but only for AbAg. Nonetheless, this metric is an
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interesting proof-of-concept, and we incorporate it as a metric of our generated structures on
the AbAg dataset.

Table 2.2 Metrics for Evaluating Likelihood of CDR Binding

Metric Description

RMSD RMSD to the Groundtruth CDR.
Shannon-Jensen Distance Measures whether the residues are a reasonable

distance from the epitope
Magnitude of Cosine Similarity Checks whether the predicted CDR has the right

orientation to the epitope by computing the co-
sine similarity between the principal compo-
nents of the predicted and groundtruth CDR

MSM Confidence Uses the Mean Shannon Entropy to Evaluate,
in a black-box manner, whether the generated
structures match the original distribution. Only
used on AbAg.

2.4 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful framework for analyzing and
learning from data with complex relational structures that do not follow repetitive patterns,
such as social networks or molecular structures. In this way, GNNs are uniquely designed
to handle information like in protein structures, which themselves can be described as a
graph by using the underlying bond networks. By aggregating information from neighboring
nodes and edges, GNNs enable the propagation of features and interactions across the entire
graph, making them well-suited for tasks like node classification, link prediction, and graph-
level analysis. In general, graph neural networks can be grouped into three broad categories:
convolutional, attentional, and message-passing. Message-passing neural networks (MPNNs),
while not necessarily the most efficient, offer the most flexibility since arbitrary messages
can be constructed and passed along edges; therefore, in this dissertation we will focus on
MPNNs.

2.4.1 Message Passing Neural Networks

Message-Passing Neural Networks are the most generic form of a GNN layer whereby
messages are constructed between each node and its neighbors. The message (mi j is typically
constructed by passing the node features and other information into a neural network.
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Fig. 2.3 A diagram of a generic MPNN depicting the incoming messages to X4 from its
neighbors. Note that the each node also passes a message to itself.

mi j = ψ(xi,x j) (2.2)

Then, the messages from neighbors (Ni) are aggregated in a permutation-invariant manner.
This aggregation is typically concatenated with the original value of the node and then passed
into a neural network to return the updated node hi (Eqn. 2.3).

hi = φ

xi,
⊕
j∈Ni

ψ
(
xi,x j

) (2.3)

MPNNs are hard to scale because the aggregation step cannot be described as matrix
multiplications, meaning that MPNNs are not particularly efficient on modern GPUs and
TPUs. Despite this computational cost, MPNNs have been highly successful on a wide very
of tasks in computational chemistry [14, 18]; therefore, they are a good choice for handling
3D protein structures.

2.4.2 SE(3)-Equivariance

So far, we have described a generic MPNN for dealing with a graph. However, protein
structures are not just a graph, but a geometric graph since each node has a position in 3D
space. Biochemically, the distance and angle between residues is important to whether and
how they might interact. Therefore, the GNN should take positional information into account.
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Additionally, even if it a protein complex is rigidly translated or rotated, it remains the
same complex. Therefore, the model must incorporate also be equivariant to the Lie group
SE(3), which describes all rigid rotations and translations.

Following the notation of [34], let T : X → X be a transformation on X and φ : X → Y .
The transformation is invariant to transformation T if φ(T (x)) = φ(x) and equivariant if
φ(T (x)) = T (φ(x)). In the case of biomolecules, the transformation T is SE(3).

Invariance and equivariance to rotations and translations has been shown to improve
GNN performance [22]. In particular, equivariant GNN layers are more expressive than
invariant layers as they can propagate positional information and geometric patterns to future
layers. There are a number of SE(3) equivariant GNNs, notably E(n) Equivariant GNNs
(EGNNs) [34] and Geometric Vector Perceptron (GVP) [21].

In conclusion, in this section we have introduced the relevant biochemistry, applied that
knowledge to develop metrics both for the physical quality of generated structures as well
as the likelihood of being a binder, and we introduced SE(3)-Equivariant Graph Neural
Networks. In the next section we will derive the fundamentals of diffusion.



Chapter 3

Diffusion Models for Protein Structure

Inspired by physics, diffusion models are a powerful and emerging class of generative
machine learning models. Diffusion models have recently attracted a surge of attention as
they have been shown to excel at a number of tasks ranging from image generation [36],
audio synthesis [25], and even protein design [39]. Diffusion models gradually apply small
amounts of noise to the data, eventually completely masking the underlying data. At each
step the model is trained to undo the noise and thereby take a step towards the real data
distribution X0. Intuitively, by applying noise to the underlying distribution, the density of
the data gradually spreads out at the different timesteps. This means that the model sees lots
of intermediate, bad structures in training, but it learns to undo them and progress towards
the real data. Additionally, by taking many "steps" repeatedly, the model does not need to
make a perfect prediction every time, but rather the model simply needs to trend towards the
mean of the distribution. In this sense, the formulation as a diffusion process simplifies the
generative task.

There has been an explosion of papers applying diffusion to protein design, and, no-
tably, Watson et al. [39] demonstrated that diffusion generated de novo proteins with an
unprecedented success rate. Therefore, diffusion models are an excellent choice for designing
antibody CDR loops to bind to a given epitope.

Chapter Roadmap We first introduce the empirical utility and underlying intuition of
diffusion models. We then derive the fundamental equations underlying diffusion models
for both the continuous and discrete formulations; we describe how to map between the two.
Having covered the general principles of diffusion, we then describe the specific adaptations
for handling protein structure: We derive the relevant equations for the SE(3) manifold and
introduce the crucial Lie algebra necessary for incorporating diffusion over rotations. We
briefly highlight some of the excellent prior literature in this space to introduce how our
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experiments complement existing works. Finally, we introduce the full architecture and
training regimen for our model to do diffusion over CDR structure.

3.1 The Discrete Formulation

Diffusion models can be described as first order Markov chains where, in the forward process,
noise is gradually applied to the data:

p(xT |x0) = p(x1|x0)p(x2|x1)...p(xT |xT−1)

p(xT |x0) =
T

∏
t=1

p(xt |xt−1)
(3.1)

where p(xT |x0) is some noising process that converges to a known and tractable stationary
distribution.

The model is trained to predict the reverse process pθ (x0:T ), which, as described in Ho et
al. [19], can done by optimizing the variational bound on the negative log likelihood.

E [− log pθ (x0)]≤ Eq

[
− log

pθ (x0:T )

q(x1:T | x0)

]
(3.2)

where q(x1:T | x0) is the real probability of the the sequence x1:T .
Typically, the noising process is defined to converge on the standard Gaussian, and to

accomplish this, the noising process must both decrease the mean and apply a variance that
eventually converges to be 1. The most common formulation of this is known as a denoising
diffusion probabilistic model (DDPM). Ho et al. [19] defines the noising procedure as:

p(xt | xt−1) := N
(

xt ;
√

1−βtxt−1,βtI
)

(3.3)

where βt is a noise schedule. Because each transition is Gaussian, the posterior at any
time xt can be rewritten in closed form in terms of x0:

p(xt | x0) = N
(
xt ;

√
ᾱtx0,(1− ᾱt)I

)
(3.4)

where αt := 1−βt and ᾱt := ∏
T
t=1 αt .

There are many methods of reparameterizing the negative log likelihood (Eqn. 3.2). Ho
et al. shows that this can be re-parameterized such that the model can simply be trained to
predict the isotropic noise applied at a timestep (εt). This simple objective allows for easy
sampling of (xt , t), the reverse process, xt−1 ∼ pθ (xt−1|t), which can be defined as
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xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

εθ (xt , t)
)
+σtz (3.5)

where z ∼ N (0,I) and εθ is the output of a model trained to predict εt using this simple
training objective:

L = Ext ,t

[
∥εt − εθ (xt , t)∥2

2

]
(3.6)

In summary, we have now established that this discrete formulation of diffusion converges
to a known stationary distribution, the isotropic Gaussian. We have shown that we can
efficiently sample the noised distribution of any timestep in closed form without traversing
the Markov chain. Finally, we have demonstrated that a function approximator trained to
predict the isotropic noise applied at each timestep will optimize the variational bound of the
negative log likelihood, and that this can be used to define a reverse process.

3.2 Derivation of the Continuous Formulation

While the DDPM approach based on Markov chains is intuitive, this can also be written as a
continuous time process because it is an example of an Ornstein-Uhlenbeck (OU) process,
which can be rewritten in continuous time or as a Markov chain [11]. The continuous time
version can be more naturally related to diffusion and Langevin dynamics, and understanding
the continuous time process is crucial to deriving score-based generative models (SGBMs),
which will be used to noise the protein residue orientations. The following math is based on
the work of Song et al., which also contains a more formal derivation [36].

Let the diffusion process be represented by an Itô SDE:

dx = f(x, t)dt +g(t)dw (3.7)

where f is the drift coefficient that depends on x(t) and g(t) is a function known as the
diffusion coefficient.

The solution to this SDE is given in Anderson [5].

dx =
[
f(x, t)−g(t)2

∇x log pt(x)
]

dt +g(t)dw (3.8)

where w̄ is the standard Wiener process (Brownian motion).
Therefore, to reverse this diffusion process, a model must learn the Stein score: ∇x log p(xt).

This can be done using score-matching [20]:
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L = Et

[
λ (t)Ex0Ext |x0

[
∥sθ (xt , t)−∇x log p(xt | x0)∥2

2

]]
(3.9)

where λ (t) is a weighting function.
Using the score in this manner is highly efficient because the score does not rely on esti-

mating the normalization over all distributions because the gradient of the model parameters
is constant with respect to x [12].

The following sections will demonstrate DDPMs are just a special case of SGBMs when
the drift and diffusion coefficients are chosen to be certain values. In this sense, SGBMs are
more powerful and better represent the underlying Langevin dynamics, motivating their use.

3.2.1 Connecting the Discrete and Continuous Formulations

An OU process is written as the following stochastic differential equation (SDE).

dxt =−θxtdt +σdWt (3.10)

where θ and σ sigma are some function, and Wt represents Brownian Motion, the Wiener
process. 1. Note that noise is not differentiable, and therefore standard calculus cannot be
used for SDEs. Itô calculus must be used instead. The trajectory of the xt can be rewritten in
terms of a probability density function, P(x, t), which satisfies the Fokker-Plank equation:

∂P(x, t)
∂ t

= θ
∂

∂x
(xP(x, t))+

σ2

2
∂ 2P(x, t)

∂x2 (3.11)

Assuming that the particle begins at single point, we can apply the initial condition
p(x, t ′) = δ (x− x′) and solve the SDE.

P
(
x, t | x′, t ′

)
= N

(
x;x′e−

∫ t
t′ θ(s),

σ2

2θ

(
1− e−2

∫ t
t′ θ(s)

))
(3.12)

Let θ = β (s)
2 and σ =

√
β (s), where β (s) is some noise schedule, and assigning x′ = x0

and t ′ = 0, then this can be written as

P(xt |x0) = N (x;x0e−
1
2
∫ t

0 β (s),(1− e−
∫ t

0 β (s))I) (3.13)

By analogy to Eqn. 3.4, the discrete and continuous time formulations can be related as
the following equations:

1This function can be rewritten as a Langevin equation: dxt
dt = −θxt +ση(t), where η(t) represents the

application of noise
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√
ᾱt =

− 1
2
∫ t

0 β (s)

(1− ᾱt) = 1− e−
∫ t

0 β (s)
(3.14)

3.3 Adapting Diffusion To Protein Structures

Having derived the discrete and continuous formulations of diffusion processes, we will now
apply them to designing a diffusion process specifically for protein structures.

3.3.1 SE(3)

Proteins are different from other "data" like images or audio because proteins are real 3D
objects and therefore live on the SE(3)-manifold, the manifold of rigid translations and
rotations. Therefore, standard SGBMs are not enough; the scores must be defined the
manifold. Recent work has extended SGBMs to Riemannian manifolds [15], and in the last
six months Yim et al. proposed a mathematically principled framework for the diffusion of
protein structures [42]. We chose to replicate Yim et al.’s approach, and the rest of Section
3.3 is based on their excellent work.

To deal with SE(3), Yim et al. carefully define a choice of inner product to identify SE(3)
as SO(3) X R3 from a Riemannian point of view [42]. Crucially, their choice of inner product
allows translations (R3) and rotations (SO(3)) rotations to be handled separately:

Let Tt = (Rt ,Xt), where Xt represents the position and Rt represents the rotation. Let
Bt

M represent Brownian motion on manifold M Then,

Tt = [0,−1
2

Xt ]dt +
[
dB(t)

SO(3),dB(t)
R3

]
(3.15)

Using Yim et al.’s approach, we can now address each R3 and SO(3) separately.

3.3.2 Translations: R3

Diffusion on R3 can be defined in by diffusing towards an isotropic Gaussian according to
the standard equations presented in Sections 3.1 and 3.2.

We initially applied the continuous time variation; however, we empirically observed
that the scores increased by three orders of magnitude at early timesteps due to numerical
instability. This worsened the model’s ability to learn the correct loss, and has been observed
in other settings [42, 24]. Therefore, noting that the SGBM and DDPM versions are related,
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we reverted to the standard DDPM formulation for translations, even as we maintain the
continuous time version for SO(3), which we describe below.

Notably, the drift term depends on the magnitude of x; in this way, diffusion is not
E(3)-invariant, which can present challenges. To handle this, we ensured that the noised
CDR loops were always centered at the origin during training and during generation, as
re-centering practically achieves the E(3)-invariance.

3.3.3 Rotations: SO(3)

SO(3) corresponds to all 3D rigid rotations. Leach et al. describe how to sample from the
Isotropic Gaussian on SO(3), the IGSO(3) distribution [26]. First, the axis-angle parameteri-
zation is used whereby an axis is defined with uniform probability on the sphere. Then, the
angle ω is sampled using this probability density:

f (ω) =
∞

∑
l=0

(2l +1)e−l(l+1)ε2 sin
((

l + 1
2

)
ω
)

sin(ω/2)
(3.16)

where the variance is ε2. Note that an additional 1−cosω

π
must be used as a scaling

factor when sampling from the distribution. Figure 3.1 shows an example of the IGSO(3)
distribution sampled using this approach.

Sampling is down via inverse transform sampling using the CDF. The score can be
computed by analytically differentiating f with respect to ω . While this scalar gradient is
easy to compute with simple calculus, operating on the SO(3) manifold requires careful use
of Lie algebra to ensure that the gradient points in the correct direction. Please see Yim et al.
for more details on the relevant Lie algebra[42].

Finding the CDF and analytically computing the score requires approximating that infinite
sum. This is computationally intensive to do in a continuous way; therefore, in practice we
do not sample random timesteps, but rather pre-compute the scores from a discrete set of
angles for which we have already cached the CDF. Inversion can then be done using linear
interpolation.

Since the drift term is set to 0, finding the variance of the process is easier and can be
found through Itô’s lemma, which states that

Var[xt ] =
∫ t

0
g(s)2ds, (3.17)

where g(s) is the diffusion coefficient.
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Fig. 3.1 An example of the IGSO(3) distribution plotted on the unit sphere, colored by the
density of the distribution.

We chose to follow Yim et al.’s [42] approach and define

g(t) =

√
dVar[xt ]

dt
(3.18)

and we set the variance schedule Var[xt ] to any function of our choosing.
Finally, SGBMs require a weighting schedule λ (t). As in Yim et al. [42], we chose to

normalize by the expectation at that timestep so that the model would equally weight the
losses at each step regardless of the magnitude of the score. This weighting schedule is very
important because the scores increase dramatically at early timesteps.

λ
r
t = 1/E

[∥∥∥∇ log pt|0

(
R(t)

n | R(0)
)∥∥∥2

SO(3)
(3.19)

We use Mean Squared Error (MSE) between the predicted score and the groundtruth
analytically computed score. To evaluate the expectation in our code, we simply divide by
the square of the analytically computed scores.

At this point, we also choose to significantly deviate from Yim et al and Watson et al
[42, 39]. In both of those models the output of the model is the final predicted frame T̂ 0.
Then, to get the score, they analytically compute

∇ log(p(T t |T̂ 0)) (3.20)
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This means that their network output must live on SE(3), which is why they choose to
use the Invariant Point Attention (IPA) network introduced by Jumper et al. for AlphaFold2
[23]. They also have to compute the scores at every step. In contrast, we chose to simply do
direct score matching to avoid recomputing the score for every training example. This allow
provided greater flexibility in selecting network architectures as there are many more that are
SE(3)-equivariant than can predict full frames like IPA.

3.4 Putting the Pieces Together: Combining into a Full
Model

We define the diffusion processes as described in the sections above, using the DDPM
formulation for translations and the SGBM implementation of SO(3), as we empirically
found that switching away from SGBMs for translations avoided loss instabilities.

Since it is computationally expensive to compute the rotations, we arbitrarily chose to
include 100 timesteps and cached the IGSO(3) distribution for each the variance at each
timestep.

To represent the CDR-epitope we generated a heterogeneous graph to represent the CDR,
what we diffuse, and the epitope, which remains constant. Defining the heterogeneous
graph in this way maximizes the expressiveness of the GNN because a different message
functions is used for each unique combination of node types: CDR-CDR, CDR-epitope,
epitope-epitope. To develop the graph, we used a k-Nearest neighbours algorithm with k=6
for each edge type. In other words, each node was connected to up to its 6 closest neighbours
of the same type, and 6 neighbours of the opposite type. For our GNN, we decided to use
Geometric Vector Perceptron (GVP), as it is a well-characterized SE(3)-equivariant GNN
[21].

GVP contains both scalar and vector features for its nodes. To construct the scalar
features, we used sinusoidal encodings to encode the timestep, which we concatenated to
a sinusoidal embedding of the residue’s position in the sequence of the CDR [38]. These
encodings were kept quite small, only 5-dimensions each, in order to keep the network
lightweight. To construct the vector features, we passed in the orientations of the residue
using the axis-angle representation of the vectors. We ablated the sequence information
from the CDR as our current model only generates structures, not sequences and structures.
However, for the epitope we included sequence information through a one-hot encoding of
the amino acid identity as a scalar feature. The epitope vector features were initialized as the
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Fig. 3.2 Diagram of how the scalar and vector features are passed through one layer of GVP.
Figure credit to my advisor, Matt Greenig.

three bond vectors (C-Cα ,N-Cα , Cβ -Cα ). Figure 3.2 depicts one layer of GVP and how the
vector and scalar features are passed through the model.

We also chose to implement self-conditioning as is done in RFDiffusion [39]. Self-
conditioning provides the model’s previous prediction as a feature to the model, breaking
the 1st-order Markov approximation. This attribute is based on the success of "recycling"
in AlphaFold2 [23], and we hypothesized that it might improve performance. Similar to
Yim et al., we provide self-conditioned features 50% of the time during training [42]. We
concatenate the self-conditioned features to the other node features.

We chose to use three message passing layers, and then the final output for each scalar
channel is set to 3, to predict the SO(3) score, and the output vector channel returns a single
SE(3)-equivariant vector feature, the applied translation noise εt .





Chapter 4

Exploring Key Choices in Model
Structure and Training Regimen

Chapter Roadmap Although many studies have now been conducted to design proteins,
there has been limited exploration of which components are most important. We first describe
the results of our model and analyze the quality of the generated structures both in terms
of their physical plausibility and in whether they might bind the epitope. We then provide
insight into an unanswered debate about the importance of incorporating residue orientations,
and we examine how removing the positional encoding affects the generated structures. We
explore the impact of self-conditioning both during training and evaluation, and we attempt
to allow the model to "dock" the CDR to the correct location.

4.1 Evaluation of Base Model

We trained the mode described in Section 3.4 on AbAg, and we generated 2000 structures
on AbAg’s test set as well as SAbDab using a noise scale of 0.2. Encouragingly, we find
that it generates structures that are highly plausible both on AbAg and on SAbDab (Figure
4.1). When evaluated on both SAbDab and AbAg, the majority of the generated structures
are free of any flaws (Table 4.1), although the rate of flawed structures increase 5 times
between AbAg and SAbDab. The dihedral angles, as demonstrated by the Ramachandran
distribution (Fig. 4.3) precisely match the overall distribution on AbAg. In fact, it appears
the model might be slightly overfit as the clusters of angles have lower variance than the
groundtruth. Conversely, on SAbDab, it misses the 3rd largest cluster because that pattern
(corresponding to α-helices is not present in the AbAg dataset and was not seen during
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training. Fascinatingly, it predicts a wider distribution of angles on SAbDab that matches the
underlying data, showing remarkably good generalization.

Fig. 4.1 Images of the generated CDR (orange) compared to the groundtruth (magenta) next
to their respective epitope (blue). The left column are all structure from the AbAg Dataset.
The right column are real CDRs from SAbDab, which the model never saw during training.
The model never saw any of these epitopes in training.

We also observe that the model generates structures that are realistic distances from the
epitope. The distributions of distances precisely match (Figure 4.2, although a few structures
are slightly too close to the epitope.
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In conclusion, these results suggest that the model generates remarkably good structures,
particularly on Abag, but that the quality of the physical structures generalizes to real CDRs
in SAbDab.

Fig. 4.2 Distances between residues in the generated CDRs to the nearest epitope epitope
α-carbon. The distance from all residues to the nearest epitope is on the left, and on the right
only the closest residue is plotted, as that is the most important to driving the binding. This
plot only shows evaluation on AbAg, but the distribution is nearly identical on SAbDab.

Table 4.1 Comparison of Model’s Predictions on SAbDab and AbAg

Metric
Dataset

AbAg SAbDab

Internal Clashes (%) ↓ 0.1 2.0
Bond Length Violations (%) 4.0 32.2
Bond Angle Violations (%) 0.9 8.5
Epitope-CDR Clashes (%) 2.6 1.0
Any Structural Flaw (%) 6.1 32.8
RMSD Average (Å) 1.75 ± 0.90 3.46 ± 1.02
All Residue Jensen-Shannon Distance 0.026 0.054
Closest Residue Jensen-Shannon Distance 0.036 0.072
Mean Magnitude of Cosine Similarity 0.84 ± 0.54 ± 0.30

However, when evaluating the likelihood of binding, the generalization of the model on
SAbDab is called into question. Most of the structures in AbAg align quite nicely with the
epitope as measured by the cosine similarity with the groundtruth CDR. In contrast, many
of generated CDRs on SAbDab do not align with the groundtruth CDR orientations. When
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analyzing the RMSD, many of the structures have an RMSD < 1.0 Angstroms, the highest
possible resolution of the underlying structures. In contrast, the RMSD on SAbDab is no
better than a random guess (Fig. 4.4), suggesting that the model may generate good structures
that align, to some extent, but that the structures may not be close enough to a real CDR.

Fig. 4.3 Ramachandran Distributions on Abag (left) and SAbDab (right).

Fig. 4.4 RMSD of the generated CDRs to the groundtruth. AbAg (left) and SAbDab
(right). The scrambled prediction is generating by swapping the generated CDR with another
generation from a different epitope. Overlap between the real and scrambled predictions on
SAbDab suggests that the model struggles to predict a real binder.

Overall, these findings suggest that the base model is remarkably capable of generating
CDRs that obey biochemical constraints; however, that the model may not be conditioning
on the epitope strongly enough and it may not be generalizing to SAbDab.

Having validated the performance of the base model, we then sought to analyze how dif-
ferent choices in designing the model and diffusion process impact the model’s performance.
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4.2 Are Orientations Truly Necessary?

In the last eighteen months, there has been an explosion in the number of papers applying
diffusion models to design proteins, but no consensus has emerged on how to incorporate
rotational information into each residue. FrameDiff [42], RFDiffusion [39], DiffAb [29], and
Anand et al. al [4] incorporate specific orientations of each frame. In contrast, ProtDiff [37],
presented at ICLR 2023, achieves reasonable results without incorporating frame information
at all. Genie also only adds noise in translation, but it gives it’s model access to rotational
information through constructing frames using the Frenet-Serret frames in the manner of
[27]. Surprisingly, no one has evaluated their models with and without rotational information.
We hoped to fill that gap.

To rebuild our model without orientations, we simply removed the orientation information
entirely in the underlying graph. Specifically, the vector features of the GVP, which previously
contained orientation information, was set to a tensor of zeros. We found that the model,
even without orientations, distributed the α-carbons into shapes that visually resembled CDR
loops and appeared to match the orientation of the epitope. However, the distance between
α-carbons no longer matched the groundtruth. Without orientations, the α-carbons tended
to be too close together when evaluating on SAbDab and AbAg (Fig. 4.5). Interestingly,
ablating orientations not only led to increased variance in the α-carbon distances, it also
led the model to miss the mean α-carbon distance by a small amount. While most of the
α-carbon distances were feasible, few were as large as the correct average distance. This
deviance was so surprising that we trained a second model, which replicated the findings.
This finding suggests that orientation information dramatically improves the quality of output
structures.

4.3 Analyzing Positional Embeddings

Proteins are formed from linear chains of amino acids; therefore, we initially incorporated this
information into the model by concatenating a short sinusoidal embedding of the sequence
position (1,2,3,...) to the features of each node in a similar manner to Vaswani et al. [38]. We
note that Trippe et al. similarly incorporates positional information [37]; however, the chose
to add the difference in sequence position to the edge embedding of their GNN, whereas
we only provide it to the node features. Empirically, we observed that our residues always
seemed to end up in the correct ordering, suggesting that this approach may be enough for
small protein fragments like CDRs. In training, the real node sequence positions were used
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Fig. 4.5 Distance between α-carbons in the generated structures for AbAg (left) and SAbDab
(right). The SAbDab plot range has been limited to [0,4.5] to remove one outlier at around
20 Å.

as features. In the reverse generative process, each residue was arbitrarily assigned a position
when the noised graph was generated.

To evaluate the importance of this positional embedding, we ablated the positional
information. Then, because structures must be organized into a linear chain, we sorted
the residues into the correct ordering using a nearest neighbour approach based on their
coordinates, and then, to organize the chain from N-terminus to C-terminus, we applied
cutoffs to select the orientation where the dihedral angles ω were most similar to the highly
conserved values in real structures. Unsurprisingly, we found that the model performed
worse; however, we were surprised by the ways in which it decreased. Specifically, the loss
for translations increased from 0.23 to 0.26, a relatively small increase. However, the loss for
rotations more than doubled from 0.24 to 0.50. Note that the rotational loss is normalized to
the size of the groundtruth score, so this increase represents a signficant drop in the model’s
performance. Interestingly, 84% of the generated structures on AbAg were biochemically
plausible (Table 4.2), but the performance dropped sharply on SAbDab, where only 22%
of structures were free of major flaws. This analysis reveals that the positional information
improves model performance and has a particularly strong impact on the model’s ability to
generalize.
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Table 4.2 Comparison of Structural Flaws when Sequence Position is Ablated

AbAg SAbDab

Base Model Position Ablated Base Model Position Ablated

Internal Clashes (%) 0.1 6.2 2.0 46.0
Bond Length Violations (%) 4.0 14.2 32.3 77.4
Bond Angle Violations (%) 0.9 6.9 8.5 45.2
Epitope-CDR Clashes (%) 2.6 2.9 1.1 1.4
Any Structural Flaw (%) 6.1 16.2 32.8 77.9

Table 4.3 Impact of Self-Conditioning on Structural Quality and Binding Metrics

AbAg SAbDab

With Without With Without

Internal Clashes (%) 0.1 0.30 1.95 10.0
Bond Length Violations (%) 4.0 5.25 32.25 42.0
Bond Angle Violations (%) 0.9 1.90 8.50 13.0
Epitope-CDR Clashes (%) 2.6 3.55 1.05 2.0
Any Structural Flaw (%) 6.1 7.75 32.75 43.0
RMSD Average Å 1.75 ± 0.90 1.79 ± 0.90 3.46 ± 1.02 3.48 ± 1.31
All Residue JS Distance 0.026 0.022 0.054 0.056
Closest Residue JS Distance 0.036 0.033 0.073 0.075
Magnitude of Cosine Sim. 0.84 ± 0.21 0.83 ± 0.22 0.54 ± 0.30 0.54 ± 0.30
MSM Prediction Mean 1.61 ± 0.72 1.64 ± 0.70 NA NA

4.4 How Important is Self-Conditioning?

4.4.1 Ablating Self-Conditioning During Generation

Self-conditioning, as described in Section 3.4, provides the model with access to its prediction
at the previous time step. Empirically, Yim et al has shown that it tends to boost performance
[42]; therefore, we wanted to validate their findings on our different model and different task.

In Table 4.3, we present the structural quality and binding metrics when self-conditioning
is used during the generative process. Similar to Yim et al., we find self-conditioning to
increase the overall quality of the structures, although, according to our metrics, there appears
to be limited to no improvement in whether such structures might bind the epitope.
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Fig. 4.6 Validation Loss Curves for when training with and without self-conditioning. The
self-conditioning rate

4.4.2 Does Self-Conditioning Improve Training?

When training, we provided self-conditioned predictions 50% of the time. However, early
in training the model’s predictions are effectively noise, so we hypothesized that self-
conditioning, while beneficial to the final generative process, might destabilize the training
procedure.

We empirically tested this hypothesis by training two models: one without self-conditioning,
and the other self-conditioning 50% of the time. The performance of the model without
self-conditioning was nearly identical to the results in Table 4.3. Moreover, although we
hypothesized that self-conditioning would slow down training, empirically we saw no differ-
ence in the validation loss curves (Fig. 4.6). This suggests that more complicated schedules
for the self-conditioning rate may not be necessary to achieve optimal performance.

4.5 Docking + Generating CDR

One of the major limitations of our model in its current formulation is that the center of mass
of the CDR must be provided so that the complex can be centered such that the CDR center
of mass is at the origin. To address this limitation, we wanted to explore whether we could
center the CDR-epitope complex at the epitope’s center of mass and instead let the model
determine where CDR should translate too over time.
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This model worked surprisingly well in the sense that the generated CDR structures
were all highly plausible, equivalent to when it was centered on the CDR. However, the
model often failed to place the CDR at the correct distance from the epitope. Although some
predicted structures appeared to be a reasonable distance from the epitope, often the structures
would be translated tens or hundreds of angstroms away from the epitope. Sometimes, they
were too close. Qualitatively, we also observed that the CDRs tended to drift towards regions
of the epitope that were nearby the groundtruth CDR, suggesting that the model may have
learned some information about which portions of the epitope would make the best binding
site.

This failure mode is not unexpected given that diffusion equation (3.7, which is not E(3)-
invariant. The drift term depends on the coordinates of the CDR. As the CDR coordinates
increase, the rate of drift correspondingly increases. If small errors in the model’s predictions
translate the CDR by the wrong amount, these errors can quickly cause the drift term to be
too large or small. Interestingly, since the MPNN is SE(3)-equivariant, the model can update
the coordinates of the structure to ensure all the nodes move together, thereby maintaining
the structural quality of the generated CDRs. In this way, the lack of E(3)-invariance, coupled
with an SE(3)-equivariant GNN, neatly explain the behavior seen in Figure 4.7. In the
literature [39, 29], the reverse process is made E(3)-invariant by constantly re-centering the
structure, as we did in our baseline model.

Overall, these results suggest that centering the CDR is necessary to have a model with a
high success rate. However, we would like to point out that the structures themselves are
reasonable, and some of them do appear to be positioned at reasonable distances relative
to the epitope. Knowing the center of mass of the CDR is a challenge in practice, as the
right part of the epitope needed to be selected and the center of mass must be placed at the
correct distance to the epitope. The distances between epitope and CDR vary a lot in practice,
making this problem highly nontrivial. Therefore, "docking" approach, coupled with filters
to remove structures in the wrong location, merits further study.

4.6 Takeaways
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Fig. 4.7 Three generated CDRs (orange) compared to their groundtruth CDRs (magenta) and
the epitope (blue). The generated CDRs tend to be at unrealistic distances to the epitope.



Chapter 5

The Impact of Variance Schedules in the
Forward and Reverse Diffusion Processes

In the previous section, we analyzed what information improves the model: the orientation
of residues, encoding the sequence position of the residues, self-conditioning, and how the
timestep is discretized. Now, we turn our attention to the diffusion process itself, specifically
the choice of variance schedules for translations and rotations and the amount of noise in the
forward and reverse processes.

Chapter Roadmap We first investigate how different variance schedules affect the quality
of the generated structures. We then evaluate the quality of structures when the amount of
noise in the reverse process is scaled down, and we allude to changes in the structure diversity.
Finally we analyze common choices for the lower bound of the noise and demonstrate how
this choice may not be optimal.

5.1 Selecting a Variance Schedule

Variance schedules β (s) are used to apply different noise to the data at different points in
training, and, in the reverse process, steps are taken with respect to the amount of noise that
was applied at a given time step.

Variance schedules have been shown to play a large role in the model quality when
diffusion models are applied to image. However, to our knowledge no one has explored
which variance schedules might be best suited for protein design. Notably, diffusion models
for proteins incorporate two different processes over translations and rotations, and the two
are biochemically linked and interdependent; the relative position between a residue and its
neighbors inform what orientations are possible and vice versa.
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When evaluating the model’s predictions, we found that the model’s performance had a
strong dependence on which timestep was sampled (Figure 5.1), and that the pattern differed
for rotations and translations. Since certain timesteps appears easier to learn than others, the
choice of variance schedule is thus very important and may be different for translations and
rotations.

Notably, for translations, the model performs best at the late timesteps. We suspect that
this is because the residues have converged on the stationary distribution and are out of
order. Therefore, the positional sequence encoding provides a strong signal for how each
residue should move. Strikingly, the model does quite poorly at the earliest timesteps. We
hypothesize that this is because those timesteps apply a noise threshold that is below the
minimum resolution of the data, a hypothesis we will explore in detail in Section 5.3.

The accuracy of the model’s predictions for rotations strongly differs from the pattern for
translations. Rotations do worst at the late timestep; however, this makes sense because the
are out of order and on top of one another. There is less signal dictating how the rotations
should change. Similarly to translations, the loss increases again at low timesteps, but it is
not so similar. This likely occurs because the average Stein score for rotations increases by
an order of magnitude at the lowest timesteps. The model tends to make predictions that are
too small at these timesteps, causing the increase in loss.

The complex relationship between the rotation variance schedule, translation schedule,
and timestep suggest that optimizing these settings could strongly improve model perfor-
mance.

5.1.1 Translations

For translations, we investigated four common variance schedules: linear, quadratic, sigmoid,
and logarithmic. We held the minimum and maximum β as a constants (1e-4, 20), choosing
these values to match Yim et al. [42]. These schedules simply fit a function to start and
end at those points. However, for diffusion models we most often care about the cumulative
variance ᾱt as this indicates how much of the underlying signal is corrupted at different
timesteps.

The cumulative variances of the different schedules are shown in Figure 5.2, where it can
be seen that quadratic preserves the most information the longest whereas the logarithmic
quickly loses most of the information.

We find that the choice of translation variance schedule strongly impacts the model’s
performance (Table 5.1). All of the results were generated using a constant rotation variance
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Fig. 5.1 The model’s loss for translations (top) and rotations (bottom) on the training set as a
function of the sampled timestep and the training time, as measured by the epoch

schedule, the logarithmic schedule for rotations.1. Notably, the logarithmic scale performs
horribly, with almost all of its structures being flawed. The quadratic noising scale works
significantly better than any other others, with more than 80% of its structures being free
of flaws. While Table 5.1 shows the results only on SAbDab, similar but less pronounced
trends were observed on AbAg. The general trend is that the schedules which apply noise
more gradually appear to boost the quality of the generated structures.

5.1.2 Rotations

For rotations, we performed a similar analysis as the translations. The variance schedule is
defined slightly differently for rotations because the noising process is not Brownian motion,
like for translations. There is no drift term for rotations, simply the noising process. To
select a variance schedule, we chose to follow the manner of Yim et al. [42]. Figure 5.3
demonstrates the cumulative variance of these schedules as a function of the timestep. In
other words, the variance when sampling p(xt |x0), not the step-wise variance of p(xt |xt−1).

1The rotation variance schedule, as a reminder, is defined differently than the translation
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Fig. 5.2 Cumulative variance (ᾱt) for the different variance schedules. The continuous time
formulation is plotted as the solid line, and the dashed line is the equivalent version using the
discrete approximation. The overlap demonstrates that the variance schedules are aligned.

Table 5.1 The Effect of Translation Variance Schedule on the Quality of Generated Structures.
SAbDab

Linear Quadratic Logarithmic Sigmoid

Internal Clashes (%) 2.0 0.6 98.4 9.0
Bond Length Violations (%) 32.3 18.7 99.7 28.2
Bond Angle Violations (%) 8.5 5.3 79.6 13.5
Epitope-CDR Clashes (%) 1.1 1.2 0.8 1.1
Any Structural Flaw (%) 32.8 19.5 99.9 28.9

As described in Table 5.2, we evaluated the three different noising schedules with the
same range of variances: βmin = 0.1 and βmax = 1.5. Like for translations, the choice of
variance schedule has a considerable impact on the model’s performance. Specifically,
choosing the logarithmic schedule resulted in an ≈ 20% improvement in the number of
structures without any flaw.

For translations, there was a general pattern where the more gradual variance schedules
seemed to yield better results. We once again notice a trend whereby the logarithmic schedule,
the best, has a cumulative variance that increases roughly linearly and relatively gradually.
The other schedules apply relatively little noise at first, but then quickly escalate. We theorize
that this may have to do with the timing of translations, since most of the translations of the
residue occur in the early timesteps because the size drift term depends on the magnitude
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Fig. 5.3 Cumulative variance (ᾱt) for the different variance schedules over rotations.

Table 5.2 Impact of the Rotation Variance Schedule on CDR Structure Quality (Evaluated on
SAbDab)

Logarithmic Linear Quadratic

Internal Clashes (%) 1.95 5.25 6.4
Bond Length Violations (%) 32.25 38.75 41.2
Bond Angle Violations (%) 8.5 7.4 11.5
Epitope-CDR Clashes (%) 1.05 1.45 1.9
Any Structural Flaw (%) 32.75 39.6 42.6

of the position. Rotations of the frames are predominantly relevant when the structure is
partially assembled; therefore, this suggests the model needs to be able to apply sufficiently
large perturbations at early timesteps. Since the size of the update is dictated by the variance
schedule, the quadratic and linear schedules, which have significantly smaller variance at
early timesteps, perform worse. We note that this is only a theory, and there are many
hypothetical justifications for its behavior, and there are likely far more complex interactions
with the translation noising process that have not been explored in this analysis.

5.2 Scaling Noise in the Reverse Process

The formal reverse process according to Langevin dynamics applies the same amount of
noise as the forward process at all timesteps (Eqn. 3.8). However, previous studies have
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Fig. 5.4 The percentage of generated CDRs that violate any physical constraint in terms of
bond length, angle, or steric clash with itself or the epitope. Shading indicates ±1 standard
deviation.

shown that decreasing the amount of noise by a factor 0 ≤ ζ ≤ 1 can improve the final output
quality [42].

dx =
[
f(x, t)−g(t)2

∇x log pt(x)
]

dt +ζ g(t)dw (5.1)

We extend the previous analysis by more rigorously analyzing the quality of output
structures as a function of ζ . We note that our model and task of protein fragments make this
analysis much easier since it takes only 1-200 ms to generate a single structure, far, far faster
than comparable models [39, 42].

We find that lowering the noise scale is very important to generating high-quality struc-
tures that are free from flaws (Fig. 5.4); however, it appears that the performance plateaus
around 0.5. This is encouraging, as lowering the amount of noise in the reverse process
undesirably decreases the diversity of the generated structures. This finding suggests that
a noise scale between 0.4 and 0.5 will generate high quality structures while hopefully not
dramatically decreasing the structural diversity of its predictions. Future experiments are
needed to develop reliable metrics to characterize the structural diversity of these small
fragments.
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5.3 Identifying the Correct Lower Bound of Noise For
Translations

Figure 5.1 shows that the model makes no accurate predictions at the lowest timesteps.
Because we use the DDPM formulation for translations, the sampled noise comes from the
standard Gaussian and does not vary as a function of timestep in the way that the score
does. Initially we speculated that these timesteps might be the hardest for the model to learn
from; however, the loss for rotations decreased, suggesting that there could be meaningful
predictions even at this small timestep. Since the model makes no meaningful predictions
at this timestep, we next hypothesized that applied noise is simply random relative to the
underlying data, and that therefore there is no signal for the model to learn.

Figure 5.1 was generated using the base model described in 3.4. In it, we applied a lower
bound on the noise threshold to be 1e-4 to match the implementation in FrameDiff, a similar
model [42]. They chose their variance schedule to range from 1e-4 to 20. 2 This lower bound
is incredibly small, especially since the resolution of structures in the PDB typically ranges
from 1.5-3 Å[9].

To demonstrate how small this is, Figure 5.5 shows the standard deviation of the noise
in Åas a function of the timesteps. At timesteps below the red line, the amount of noise is
far smaller than the resolution of the data. This cutoff roughly matches when the model’s
accuracy becomes to drop, suggesting that the lower bound of the noise should be increased
to boost performance. However, it is also possible that this small lower bound might improve
the model if it contributes to a variance schedule that is somehow easier to learn.

Based on these findings, we decided to empirically test the model’s performance as a
function of the lower bound of the noise. Specifically, we tested at every order of magnitude
between 1e−4, that of the original model, and 1e0, which would never apply noise smaller
than the natural resolution of the data.

As shown in Table 5.3, we find that there is no change in the model performance from
when the lower bound is increased 100-fold from 1e-4 to 1e-2. However, the number of
structural flaws does increase dramatically as the minimum noise threshold of 1e0. Quali-
tatively, we observe that the model continues to be unable to make meaningful predictions
at the smallest timesteps except when βmin = 1e0. Therefore, we expect that the optimal
threshold likely is somewhere around 1e−1.

2The bound of 20 might seem absurdly large for the variance. However, these bounds are reported using the
continuous time notation; they cannot be mistaken for the variances of the Markov process. To convert between
them, we use Volterra product integrals. As a quick rule of thumb, to get the variances that would be used with
the Markov process, simply divide by the number of steps in the Markov chain. In this case, we use 100, so the
variance at the final timestep would be 0.2.
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Fig. 5.5 The standard deviation of the noise (Å) for the variance schedule described in Yim
et al [42]. The red line denotes when two adjacent when 3σ of noise, applied to both, would
cause an expected difference of 1Å. In this sense, at timesteps before that line, the applied
noise is so small that it is well below the real resolution of the data.

Table 5.3 Analyzing the quality of the generated CDRs on SAbDab as a function of the βmin
of the translation variance schedule.

βmin

1e0 1e-2 1e-3 1e-4

Internal Clashes (%) 41.4 1.1 4.1 2.0
Bond Length Violations (%) 50.7 33.2 36.2 32.3
Bond Angle Violations (%) 28.8 10.9 10.0 8.5
Epitope-CDR Clashes (%) 1.3 1.2 1.3 1.1
Any Structural Flaw (%) 52.1 33.8 36.6 32.8
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Ultimately, these empirical results suggest that there is an optimal minimum of the
variance schedule such that the model makes meaningful predictions at all timesteps and
that result in a good structure. We expect that this finding would likely generalize for the
many different diffusion models for protein design, as the resolution of the underlying
protein structures is generally the same across the dataset. Therefore, this analysis is a useful
contribution to the field in that it can guide the optimal settings of the variance schedules;
however, more detailed analysis is still needed to find the optimal range of variances.





Chapter 6

Impact of Data Availability

In previous sections, we approached the problem of designing antibody CDRs from the
perspective of better ML models. However, dataset size and quality remain key concerns in
machine learning for science. Therefore, in this section we briefly explore whether this task
might benefit from larger datasets.

Chapter Roadmap To date, most models analyzing CDR loops have exclusively trained
on SAbDab and similar datasets of real CDRs, to our knowledge. Therefore, we first analyze
how training on SAbDab alone compares to the models trained on AbAg for the task of
generating CDRs. Then, we investigate whether larger datasets are necessary by analyzing
the quality of generated structures as models are trained on fewer and fewer examples.
Finally, we pretrain a model on AbAg and then fine-tune on SAbDab, demonstrating that this
approach has the highest accuracy of any other method and that the generated CDRs neatly
align with groundtruth CDRs.

6.1 Training on SAbDab Alone

SAbDab is one of the largest and most complete datasets of antibodies. However, after
filtering to include only antibody-epitope complexes, not just antibody structures alone, and
removing any CDRs with >90% sequence similarity, only 6800 structures remained. While a
few other works have applied generative models to designing CDRs (Xie et al, Luo et al),
these works have been limited to training on SAbDab and a few other very small datasets
[41, 29]. An early pre-print of Luo et al. reported that they trained on a similar in-house
fragment dataset to AbAg; however, they reported that the dataset did not improve their
model’s performance compared to training on SAbDab alone [29]. Because of the importance
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Table 6.1 Comparing Model Performance When Training Exclusively on SAbDab or AbAg

Evaluation Dataset AbAg SAbDab

Training Dataset AbAg SAbDab AbAg SAbDab

Internal Clashes 0.05 32.12 1.95 51.52
Bond Length Violations (%) 4.00 45.91 32.25 58.94
Bond Angle Violations (%) 0.90 33.03 8.50 50.91
Epitope-CDR Clashes (%) 2.55 1.21 1.05 0.91
Any Structural Flaw (%) 6.05 46.67 32.75 59.70
RMSD Average (Å) 1.75 ± 0.9 2.54 ± 0.39 3.46 ± 1.02 2.66 ± 0.81
All Residue JS Distance 0.026 0.101 0.054 0.117
Closest Residue JS Distance 0.036 0.211 0.073 0.187
Mag. Cosine Sim. 0.84 ± 0.21 0.634 ± 0.29 0.54 ± 0.30 0.65 ± 0.30
MSM Prediction 1.61 ± 0.72 2.03 ± 0.47 NA NA

of SAbDab in the antibody design literature, we wanted to explore how our model performed
when trained on SAbDab alone.

There are some striking patterns in how the models before. For example, training on
AbAg leads to structures that do not have good RMSDs against the known structures, as an
RMSD of 3.4-3.6 corresponds to that of a random guess (Fig. 4.4). Shockingly, training on
SAbDab, despite its being significantly smaller, leads to RMSD that are better than a random
guess on AbAg (2.54 ± 0.39). While this is of course not as good as the model trained on
AbAg, it is very interesting that training on SAbDab seems to lead to better RMSDs on AbAg
but not vice versa. This may be due to the differences in how the datasets are constructed,
as structures in AbAg often are only fragments of CDRs, and they typically contain larger
epitopes which constrain the possible solution space. In this way, AbAg is almost certainly
an easier task, which is confirmed by the fact that the model trained on SAbDab has a higher
RMSD on SAbDab than AbAg (2.66 ± 0.81 vs 2.54 ± 0.39, respectively).

Training on SAbDab meant that the generated structures tended to have the same major
axis as the underlying groundtruth, another confirmation that training on SAbDab offers a
large performance boost. Similarly, the distribution of distances of the closest residue is
slightly better when trained on SAbDab.

While SAbDab appears to generate structures that are closer to the underlying groundtruth,
its structures fail at a dramatically higher rate than the model trained on AbAg. 60% of
structures generated on SAbDab have a major flaw; the model trained on AbAg is only
33%. In this way, it appears that training on SAbDab incorporates important and unique
information about CDR loops. However, likely due to its small size, training on SAbDab
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Table 6.2 Comparing Fine-Tuning on SAbDab to Baseline Models. Evaluated on Withheld
Test Set of 330 SAbDab structures

Training Dataset

AbAg SAbDab Fine-tuned on SAbDab

Internal Clashes (%) 1.95 51.52 0.15
Bond Length Violations (%) 32.25 58.94 14.85
Bond Angle Violations (%) 8.50 50.91 2.12
Epitope-CDR Clashes (%) 1.05 0.91 2.73
Any Structural Flaw (%) 32.75 59.70 16.52
RMSD Average (Å) 3.46 ± 1.02 2.66 ± 0.81 2.45 ± 1.05
All Residue JS Distance 0.054 0.117 0.030
Closest Residue JS Distance 0.073 0.187 0.062
Mag.of Cosine Sim. 0.54 ± 0.30 0.65 ± 0.30 0.70 ± 0.29

does not generate as many structures that are physically plausible. This is an important
observation as previous papers in this space have mainly focused on RMSD and amino acid
sequence recovery rate. However, these results show that structures with a decent RMSD
may have major structural flaws.

6.2 Fine-tuning on SAbDab

Training on AbAg alone led to CDRs that generally were very high quality in terms of obeying
physical constraints, but the alignment with real CDRs was poor. Training on SAbDab alone
created structures that more closely matched the groundtruth, but the generated structures
often had major structural flaws. Therefore, we decided to see if fine-tuning a model pre-
trained on AbAg might be able to achieve the best of both worlds.

Excitingly, we find that the pre-trained model manages to generate structures that are
fairly well-aligned with the epitope and that are mostly free from any major structural flaws
(Table 6.2). The fine-tuned model outperforms all other settings, and it incorporates some
of the secondary structures that were missing in AbAg, as shown by the Ramachandran
distribution in Figure 6.1.

6.3 Impact of Decreasing AbAg Size

Larger datasets almost always improve the power of ML models; however, biological datasets
often are extremely expensive and difficult to gather. After filtering, SAbDab contains <7000
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Fig. 6.1 The Ramachandran distribution of generated CDRs compared to the groundtruth
improves significantly when using the pre-trained model.

Table 6.3 Analyzing the Quality of 2000 Structures When Trained on Smaller Versions of
AbAg

Evaluation Dataset AbAg SAbDab
Training Set Size 100% 50% 25% 10% 50% 25%
Internal Clashes (%) 0.05 0.8 2.65 1.95 17.7 33.15
Bond Length Violations (%) 4 4.6 5.1 32.25 47.85 40.05
Bond Angle Violations (%) 0.9 0.9 1.95 8.5 15.2 26.05
Epitope-CDR Clashes (%) 2.55 1.3 2.75 1.05 1.45 1.45
Any Structural Flaw (%) 6.05 5.5 6.9 32.75 48.2 41.15

complexes, and AbAg <70,000. Compared to the corpus of images for computer vision or
speech and text for natural language processing, these datasets are minuscule. Therefore,
we were motivated to explore how the model performs when trained on smaller and smaller
versions of AbAg.

Surprisingly, we find that the dataset size does not appear to have a particularly large
impact on performance (Table 6.3). The model trained on on 100% of AbAg does have the
lowest amount of structural flaws on SAbDab by a margin; however, the model trained on
only 25% of the dataset outperformed the model trained on 50%. Therefore, the improved
performance of the full model may not be fully reproducible, and more experiments are
needed to validate these findings. We would also note that we are training with a relatively
small model of only 3.42 million parameters. Improving performance often requires simulta-
neously increasing the number of parameters, amount of data, and training time. It is likely
that training a larger model would benefit from the larger dataset.
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Discussion

Overall, the CDRs generated by our models appear to be of very high structural quality, which
is incredibly exciting. However, we still appear to have relatively high RMSD against known
CDRs. While RMSD is not a perfect metric, our results suggest that the model’s predictions
could be much more strongly conditioned on the epitope, and future work should examine
ways of enforcing the CDRs to not just form reasonable shapes but to match the epitope.
Additional in silico metrics of binding quality would greatly improve this dissertation and
provide a valuable resource to the protein design and machine learning communities.

Another challenge that this dissertation neglects is the fact that epitopes often deform
upon binding, adopting a new conformation. This is incredibly important because our model
always trains on bound structures in these higher-energy conformations. In real use, however,
the model would be provided an epitope alone or perhaps even a predicted structure from
AlphaFold2. It would be very exciting to explore whether diffusion models might be able
simultaneously generate a CDR and sample different conformations of the epitope, alleviating
this problem.

In addition, there are a number of ways that the methodology in this dissertation was
limited. While we evaluate a number of the architecture choices for the diffusion model, many
papers in the literature utilize different GNNS [37, 42, 29]. A more complete analysis would
have additionally tested some of these other major SE(3)-equivariant GNN architectures to
determine the optimal configuration. We also set out to explore how the choice of variable
schedule for both rotations and translations affects the model performance, and we generated
post-hoc explanations for which schedule seemed to be better. This analysis would strongly
benefit from future experiments to confirm or refute the explanations. Furthermore, although
we point out that the optimal translation and rotation schedules depend on each other, in our
experiments we hold rotations constant when we varied the translations and vice versa. A
more complete analysis of the schedules is needed.
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Additionally, although this dissertation attempts to make general conclusions about
designing peptide binders with diffusion models, we exclusively focus on CDR loops. This
focus is warranted because Watson et al. has recently demonstrated that RFDiffusion excels
at generating binders de novo; however, these binders would likely be highly immunogenic
and could not be incorporated into antibody CDRs [39]. Designing binding loops is thus a
particularly important and difficult prediction task that needs new approaches. Therefore,
the focus on CDR loops is justified, but this dissertation cannot make broad claims about
designing general peptide binders.

Finally, the largest limitation of this model is that it does not incorporate sequence
information. The side chains of amino acids have a wide variety of shapes and sizes, and
interactions between these side chains and the epitope are driving the binding reaction.
Although Watson et al. [39] found that using diffusing both structure and sequence is
unnecessary, that finding might not hold for binding loops, which are very different from
the rigid proteins that RFDiffusion generates. Small changes in the position of a residue can
have an incredibly strong effect on whether a molecule binds tightly or poorly. Consequently,
jointly diffusion over both sequence and structure is a natural and necessary extension of this
work.

7.1 Future Directions

Beyond the many additional experiments proposed above, the main next step will be to
incorporate sequence information. The initial plan for this dissertation was to examine novel
methods of doing sequence diffusion; however, the current experiments easily filled the
short 3 months of the dissertation. Nevertheless, I spent over a week reading about different
methods of doing sequence diffusion, and I am very excited to explore these approaches.

7.1.1 Discrete Diffusion over Sequences

Rotations and translations exist in a continuous state space; however, amino acids belong to
a categorical distribution. Therefore, noise must be applied in a different way, and the model
must also learn something different in the reverse process.

Discrete diffusion is a method of noising on the categorical distribution. Specifically,
the forward transition probabilities can be expressed as a transition matrix Q, and then the
change in the a categorical distribution st can be written as:

q(st |st−1) =Cat(st ;p = st−1Qt) (7.1)
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as expressed in Austin et al. [7]. By definition, Qt represents the probability of any one
category becoming a different one, and there it is square. So, the transition probability from
s0 to st can be written in closed form as

q(st | s0) = Cat
(
st ; p = s0Qt

)
, with Qt = Q1Q2 . . .Qt (7.2)

Then, the model can be trained to predict the previous distribution of the data by op-
timizing against the KL-divergence. There are a number of different potential transition
matrices; however, to our knowledge, only models using uniform transition matrices [29]
and an absorbing state [4] have been published in the literature. Neither of these transition
probabilities account for the underlying biology, and it would be fascinating to explore how
biologically-inspired transition matrices might improve results.

While discrete diffusion is easy to define mathematically, it is also somewhat nonphysical
in the sense that at every step the model samples from the categorical distribution. This
means that amino acids might jump to become one with very different physio-chemical
properties, and the model may not have enough steps in the reverse process to correct itself.

7.1.2 Dirichlet Diffusion over Sequences

Rather than using the hard jumps of discrete diffusion, Dirichlet diffusion instead applies
noise to the probability simplex such that the stationary distribution will be a Dirichlet
distribution. Advantageously, this allows the residues to not transition sharply but instead to
slowly diffuse towards specific amino acids. The theoretical groundwork for diffusion on
the probability simplex has only recently been demonstrated in the last year [8, 31]. To my
knowledge, no papers have been published that apply Dirichlet diffusion to generative protein
modeling, and believe that this is a very promising direction because the hard transitions of
discrete diffusion are nonphysical. If the model samples a transition at a late time step, the
entire structure might need to be rearranged to make space to avoid a steric clash. Conversely,
in Dirichlet diffusion, if a CDR residue is close to the epitope, the model, in theory, will shift
the distribution so that more mass is assigned to the vectors where the residue is relatively
small, and this information can be preserved through the rest of the diffusion process.





Chapter 8

Conclusion

We developed a new diffusion model to design protein fragments that will bind to a given
epitope. Specifically, we focused on a particularly difficult but important task, designing the
flexible CDR loops that mediate antibody affinity and specificity. Excitingly, our model was
capable of generating structures that obeyed the fundamental physical principles underlying
protein structure, and it often gave new structures that appeared dissimilar to the groundtruth
CDR, suggesting that these CDRs are both plausible and reasonable. Despite the explosion of
recent works developing diffusion models for protein design, there has been little analysis of
which features of the models most strongly affect the quality of the generated structures. We
thoroughly benchmarked different design choices and highlighted the importance of using
positional sequence encodings to enforce the protein to adopt a linear structure. We showed
that giving the model access to rotational information is essential to generating plausible
structures. We demonstrate a proof-of-concept for allowing the model to predict where a
CDR should bind; however, this approach had middling success due to the underlying lack of
R3-invariance. We experimented with different noising schedules for translation and rotation,
finding that the choice of schedule and of the maximum bounds on the variance schedule
are highly important. Finally, we study whether the availability of data for this task. We
show that training on SAbDab alone, the approach of scientists in this field, empirically
gives structures that are physically flawed. These flawed structures also had reasonably
good RMSD, which is striking because many recent papers have not evaluated the structural
quality of the generated CDRs and instead focused on RMSD.

Ultimately, this work is focused on how machine learning can be used to hasten scientific
progress and unleash the potential of synthetic biology to improve healthcare. I hope that
these findings will spur further research that eventually realizes the dream of in silico rational
protein design.
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Appendix A

Evaluating Structure Quality Using
Confidence of Auxiliary Model

Generative modelling for protein structures has exploded in recent years; however, while
good metrics exist for evaluating whether structures are biochemically plausible, there is a
dearth of in silico metrics to evaluate whether a protein structure might carry out a specific
function. While some metrics exist for the surfaces of whole proteins CITATION: MASSIF,
and there are physics-based tools such as Rosetta CITATION: Rosetta, these tools are limited
in accuracy, require information about the sequence of the residue, and perform better on
larger structures than the loops in our dataset. It is also notoriously difficult to calculate the
∆G of binding for loops as they are much more flexible than alpha helices or beta sheets,
which increases the entropic penalty of binding and allows for more degrees of freedom in the
shape of the binder. Furthermore, physics-based computational software such as Rosetta are
quite expensive; it would be very computationally intense to evaluate the tens of thousands
of novel structures generated in this dissertation. Therefore, we were motivated to develop a
novel, fast metric to evaluate the likelihood of a CDR binding to a particular epitope.

We hypothesized that the confidence of an auxiliary model, trained on real CDRs, might
be a suitable, rapid metric. We theorized that the model would have lower confidence in its
predictions if it was given a structure where the CDR was less likely to bind the epitope,
perhaps due to being too close or far away to the epitope, having a poor orientation to the
epitope, or simply having a shape that is dissimilar to real CDRs. In this way, the out-of-
distribution (OOD) data could be detected by the confidence of the model. However, deep
learning models typically have no guarantees of performance on OOD examples. In fact,
some OOD examples might elicit an extraordinarily confident prediction from the model,
despite being completely wrong CITATION: Hendrycks all through here.
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To use a deep learning model’s confidence, therefore, we would need to empirically
demonstrate that it becomes less confident as the quality of the underlying data decreases. To
do this, we first trained a masked sequence model (MSM) to predict the protein sequence
of the loop (inverse folding). The model was based on the same architecture as LoopDiff, a
GVP, but the MLP in the last layer was modified to predict which amino acids were most
likely for a given residue. Notably, unlike other inverse folding models like ProteinMPNN
CITATION: daupaurus, this model’s task is not just to find a sequence that folds into the
correct shape, but also to identify the right individual amino acids so that the loop tightly
binds the epitope. We aimed to simulate CDRs that are bad binders and test whether the
model’s confidence would predictably decrease as the CDR structure worsened.

Biochemically, a CDR’s binding would strongly depend on its geometric relationship to
the epitope. Being even slightly too far away can drastically decrease the strong of protein
interactions; conversely, being too close would introduce steric strain on the loop (an entropic
penalty) or cause repulsion if truly too close. Therefore, we determined that the model’s
confidence should predictably increase if any of the following occurred:

1. The CDR is translated away from the epitope

2. The CDR is translated towards the epitope

3. The CDR is translated parallel to the epitope

4. The CDR is rotated parallel to the epitope

5. The CDR is rotated and translated

To measure the model’s confidence, we compute the mean Shannon Entropy over all of
the residues in the CDR (Eq. A.1).

H(X) =
1
N

N

∑
n

I

∑
i
−P(xi,n) logP(xi,n) (A.1)

As shown in Figure A.1, the mean entropy of the model’s predictions increases linearly
when the CDR is rigidly translated away from the center of mass of the epitope, before
plateauing at a large amount of entropy. Similarly, when translated parallel to the epitope, the
entropy increases before plateauing. Notably, there is a wide variance in the entropy without
any corruption, and the variance is roughly constant as the CDR is modified and the entropy
increases.This large variability means that this method cannot judge the quality of any one
structure; however, it is still applicable to evaluating a large group of predictions, because in
that case the mean of the predictions is meaningful.
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Notably, the entropy does not monotonically increase when the CDR is moved closer.
It first increases, and the rapidly falls when the structures are overlapping. This failure
mode would be detected as a clash by other metrics; therefore, it’s not a complete failure.
Interestingly, this occurs because the MSM predicts that the residues should be small amino
acids to avoid clashes. There was a 60% chance that the model predicted glycine, threonine,
or alanine. Therefore, although the entropy does not predictably increase as they get closer,
in practice this failure mode is both rare, would be captured by other metrics, and actually
reflects the model making a prediction that matches biochemical intuition.

Having established that translations cause predictable changes in the entropy, we then
hoped to evaluate rotations. The CDR was rotated around its center of mass and the vector
between the center of masses of the CDR and the epitope (Fig. XXY). In this way, the CDR
is rotated "parallel" to the epitope. Encouragingly, we find that as the CDR is rotated even
slightly, the entropy dramatically increases. Since most CDR loops are roughly cylindrical,
not spherical, the worst alignment would likely be at 90º angle rotations, which we empirically
observe. Moreover, the prediction is symmetrical. In this way, the MSM’s mean confidence
is clearly dependent on the CDR having the correct orientation relative to the epitope.

Finally we demonstrate that translating and rotating and the same time both independently
increase the entropy, suggesting that the MSM metric is robust (Fig. A.2).

So far, all of the results have been on the AbAg dataset with a model trained on AbAg.
Unfortunately, we were unable to train any MSM on SAbDab, which is both smaller and
more complex, that had any meaningful confidence in its predictions. All of the predictions
on SAbDab had relatively high entropy. As shown in Figure A.3, this means that this metric
fails on predictions of real CDRs and can only be used to evaluate predictions on AbAg.

Nonetheless, it is remarkable that the confidence of the MSM appears to be sensitive
to the CDR adopting the correct binding pose. In this way, the MSM metric, if only on
AbAg, provides an additional metric to evaluate the generated structures from the diffusion
model. The model is also very lightweight, evaluating thousands of structures in seconds on
a Quadro RTX 8000 GPU.
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Fig. A.1 The Mean Shannon entropy as the CDR is rigidly translated in different directions
relative to the epitope. From top to bottom, the CDR is translated away along the line
connecting their center of masses, then towards along that line, and finally perpendicularly to
that line, in the plane containing the CDR’s center of mass.
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Fig. A.2 Left: The Mean Shannon entropy as the CDR is rotated about its center of mass, in
the plane perpendicular to the vector connecting the center of mass of the CDR. Right: The
same as left, but the CDR has now been additionally displaced 3 angstroms away from the
epitope, a reasonable range for our generated structures to miss by.

Fig. A.3 No MSM trained on SAbDab gives predictions that change when the CDR’s location
is corrupted.
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