
Distilling and Forgetting in Large
Pre-Trained Models

Tony Wu

Supervisors: Prof. Mark Gales

Dr. Mengjie Qian

Adian Liusie

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Master of Philosophy in Machine Learning and Machine Intelligence

Sidney Sussex College August 2023

I would like to dedicate this thesis to the people who made this journey meaningful.

Declaration

I, Tony Wu of Sidney Sussex College, being a candidate for the MPhil in Machine Learning
and Machine Intelligence, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

Word count: 14,263

Tony Wu
August 2023

Declaration

The core code - module excluded - is entirely my own. The vast majority of the implemen-
tation is carried out in the Python software language (version 3.10.11). Extensively used
Python libraries include:

• Standard packages: numpy 1.24.3, typer 0.9.0, jiwer 3.0.2, pandas 2.0.2

• Plotting packages: matplotlib 3.7.1, seaborn 0.12.2

• Deep learning packages: torch 2.0.1, transformers 4.31, datasets 2.13.0, accelerate
0.20.3, optimum 3.2.0, huggingface-hub 0.15.1

• Experiment tracking package: wandb 0.15.4

In particular, the Whisper model was implemented by transformers and contributed by
Arthur Zucker. The weights of the pre-trained vanilla Whisper models have been released by
OpenAI.

The entire code developed for this thesis can be found in the following GitHub repository:
https://github.com/tonywu71/distilling-and-forgetting-in-large-pre-trained-models/releases/tag/v1.0.0.

Experiments were run on Cambridge’s High Performance Computing Service (HPC).
Note that extra storage space was granted by ALTA (Cambridge University Institute for
Automated Language Teaching and Assessment) for storing the datasets used in this project.

Tony Wu
August 2023

https://github.com/tonywu71/distilling-and-forgetting-in-large-pre-trained-models/releases/tag/v1.0.0

Acknowledgements

I want to thank Prof. Mark Gales for his guidance and mentorship throughout the writing of
this dissertation. As I was never exposed to proper research before working on this thesis,
his expertise in instilling research rigor has been invaluable to my academic growth. I was
particularly impressed by his eloquence and communication clarity, which I tried to hone
during these five months of research. I would also like to sincerely thank Dr. Mengjie Qian,
Adian Liusie, and Rao Ma for providing me with invaluable direction and technical support
during the five months spent on this thesis. I would also like to thank my friends and family
for making this journey meaningful. Julien, Tam-Phuc, Stéphanie, Loan, Timothé, Daphné,
Louis, Claire, Martin, Marcel, Matheus, João, Mazel, Alex, Marco, Henry, and Selina, I am
indebted for your unconditional support. As for Jonathan, Andrey, Samira, and Phil, I am
incredibly grateful for having the chance to grow under your mentorship.

Abstract

Large pre-trained models have become popular for deep learning applications because of
their impressive performance. Moreover, they can be fine-tuned to perform specific tasks with
relatively small amounts of data. However, many challenges remain to be tackled. Notably,
the substantial number of parameters in these models makes them computationally expensive
and slow at inference. Additionally, a separate issue arises when fine-tuning models to
incorporate new tasks, as this process often leads to the forgetting of previously acquired
knowledge. This is problematic as a robust and generic model is desirable. This dissertation
investigates methods to solve these two issues. The application of these techniques is tested
on Whisper, a state-of-the-art Automatic Speech Recognition (ASR) foundation model with
a Transformer architecture.

Firstly, the trade-off between model size and performance can be solved by knowledge
distillation. Distillation is a machine learning training technique used to transfer knowledge
from a large model (the teacher) to a smaller one (the student). At its core, knowledge distil-
lation involves training the student to mimic the teacher’s output logits. This thesis explores
two unsupervised distillation methods suited for sequence-to-sequence models: word-level
distillation and K-best sequence-level distillation. The models are trained exclusively on
AMI, a 100h-long English conversational dataset. Using Whisper tiny as the student and
Whisper medium as the teacher, it is shown that naively using the raw teacher outputs for
1-best distillation gives a poor word error rate (WER) improvement from 27.74% to 27.30%
for 1-best distillation on the AMI test set. Therefore, normalizing the teacher’s predictions
and filtering out hallucinations prior to training are investigated to improve the distillation
performance. In particular, filtering out the teacher’s transcriptions with high values of gzip
compression ratio is demonstrated to be quite effective: while it removes only 0.08% of the
examples and 0.26% of the audio from the training set, the subsequent 1-best yields a much
more reasonable WER decrease from 27.74% to 22.80% on AMI test, i.e. a 17.81% relative
improvement.

Secondly, continual learning can be achieved using Elastic Weight Consolidation (EWC).
By estimating the Fisher information matrix for the previous tasks, it is possible to measure

xii

the task-related importance of the model’s parameters, which EWC can a fortiori adequately
regularize during fine-tuning. Furthermore, Task Alignment Consolidation (TAC) - a novel
method introduced in this thesis - considers regularization from the prediction space to
preserve the multilingual capabilities of Whisper without needing data from the previous
tasks. Nonetheless, this method is shown to be inefficient. On the other hand, EWC proves
to be an impressive candidate for continual learning. Not only does it manage to keep the
relative WER increase for French transcription under 4% of the vanilla performance for the
whole training, but it also significantly reduces forgetting for other non-English transcription
tasks: compared to default fine-tuning, EWC achieves an average relative WER drop of
25.13% on the non-English datasets from Multilingual LibriSpeech.

Table of contents

List of figures xvii

List of tables xix

1 Introduction 1

2 Automatic Speech Recognition 5
2.1 Background . 5

2.1.1 Feature extractor . 5
2.1.2 Tokenizer . 6
2.1.3 End-to-end ASR models . 6

2.2 Whisper . 7
2.2.1 Architecture . 8
2.2.2 Multi-task pre-training . 8
2.2.3 Trade-off between model size and latency 8
2.2.4 Decoding strategies . 9
2.2.5 Known issues . 10

3 Knowledge distillation 13
3.1 Background . 14
3.2 Word-level distillation . 16
3.3 Sequence-level distillation . 17

3.3.1 1-best distillation . 18
3.3.2 K-best distillation . 18

4 Continual learning 21
4.1 Elastic Weight Consolidation . 22

4.1.1 Proof . 22
4.1.2 Implementation . 26

xiv Table of contents

4.2 Task Alignment Consolidation . 28
4.2.1 Definition . 28
4.2.2 Implementation . 29

5 Experimental setup 31
5.1 Datasets . 31

5.1.1 Target datasets . 31
5.1.2 Evaluation datasets . 32

5.2 Text normalization strategy . 33
5.2.1 Normalized evaluation . 33
5.2.2 Teacher normalization for knowledge distillation 33

5.3 Decoding strategy . 35
5.3.1 Prompting strategy . 35
5.3.2 Generation strategy . 35

5.4 Whisper vanilla performance . 38
5.4.1 Results . 38
5.4.2 Analysis . 39

6 Results and discussion 43
6.1 Supervised fine-tuning . 43

6.1.1 Results . 43
6.1.2 Analysis . 44

6.2 Unsupervised knowledge distillation . 50
6.2.1 1-best unsupervised distillation . 50
6.2.2 Word-level unsupervised distillation 59
6.2.3 K-best unsupervised distillation 60

6.3 Continual learning . 63
6.3.1 Elastic Weight Consolidation . 63
6.3.2 Task Alignment Consolidation . 67

7 Conclusion 71

References 73

Appendix A Evaluation datasets 79
A.1 End-to-End Speech Benchmark (ESB) . 79
A.2 ESB diagnostic custom (ESBDC) . 80
A.3 MultiLingual LibriSpeech (MLS) . 80

Table of contents xv

A.4 Forgetting Assessment Dataset (FAD) . 81

List of figures

1.1 Timeline of Transformer-based large pre-trained models for speech. For
models with several sizes, the largest was considered. 1

1.2 Knowledge distillation solves the trade-off between performance and model
size. 2

2.1 Illustration of the mel scale transformation. 5
2.2 Whisper’s architecture as presented by Radford et al. [57]. 7
2.3 Whisper’s multi-task format as presented by Radford et al. [57]. 8

3.1 Impact of the temperature τ on the distribution of the teacher’s predictions
q′(y|x) for 4 classes. The original distribution is given for τ = 1. 14

3.2 Knowledge distillation process for a supervised classification task. 15
3.3 The word-level distillation process (at each time step). 16
3.4 The sequence-level distillation process. 17
3.5 The K-best distillation process. 19
3.6 Distribution of the weights wk for the 5-best ranked approximation sequence-

level distillation method and for different values of β 19

4.1 Comparison of training trajectories using EWC. The intersection of the blue
and orange subsets is where we want our model to have its parameters. θ ⋆

A is
the vector that contains the optimal weights for the model under task A. . . 22

4.2 TAC training strategy for fine-tuning Whisper on an English transcription
task while tackling forgetting on French transcription. 29

5.1 Evolution of the WER metrics for the vanilla Whisper tiny decoded with
K-beam search on AMI test with respect to the beam size K. 36

5.2 Evolution of the probability of the next predicted token for an arbitrary exam-
ple from AMI validation. The reference is "so we have oh no what’s
that". 36

xviii List of figures

5.3 Evolution of the WER of the vanilla Whisper models with respect to their
model size. The models were evaluated on the AMI 100h test split. 38

5.4 Evolution of the number of tokens in the medium Whisper’s outputs with
respect to the number of tokens in the references. 40

5.5 Evolution of the exceeding number of tokens generated by the teacher with
respect to the audio length. 41

6.1 Evolution of WER (%) on the FAD dataset with respect to the training steps
during the supervised fine-tuning of Whisper tiny on AMI. Each point
corresponds to a saved and evaluated checkpoint. Relative difference is
computed with respect to the vanilla model. 47

6.2 Process to use the implicit language model in Whisper. 48
6.3 Evolution of perplexity for multilingual transcription with respect to the

training steps during the fine-tuning of Whisper tiny on AMI. Each point
corresponds to a saved and evaluated checkpoint. Relative difference is
computed with respect to the vanilla model. 49

6.4 Impact of the excess tokens filter on the train split of AMI. The teacher model
is Whisper medium. 51

6.5 Impact of teacher gzip ratio filter on the train split of AMI. The teacher
model is Whisper medium. 53

6.6 Example of token-level time-stamping for a Whisper prediction without
hallucination. 54

6.7 Example of token-leve time-stamping for a Whisper prediction without
hallucination. 54

6.8 Evolution of the ratio of instant tokens with respect to the number of excess
teacher tokens. 55

6.9 Example of time-stamping for a Whisper prediction without hallucination. . 62
6.10 WER pairplot on AMI and MLS French test splits with respect to λ . The

points for default fine-tuning correspond to the different checkpoints every
600 steps. 64

6.11 Evolution of WER (%) on the FAD dataset with respect to the training steps
during the fine-tuning of Whisper tiny on AMI. Each point corresponds
to a saved and evaluated checkpoint. Relative difference is computed with
respect to the vanilla model. 66

6.12 Distribution of the gzip compression ratio of the references and the predic-
tions of tiny on the AMI test split. 68

List of tables

2.1 Evolution of the number of the mean inference time with respect to the
number of parameters in the different Whisper models. 9

2.2 Examples of issues with Whisper’s transcriptions. 11

5.1 Details about the LibriSpeech clean dataset. 32
5.2 Details about the AMI-IHM 100h dataset. 32
5.3 Evaluation dataset groups used in this thesis. 33
5.4 Comparison between the different normalization strategies available. The

highlighted row is the normalization strategy we will use. 34
5.5 Example of the effect of post-processing on the teacher’s generated predictions. 34
5.6 Example of discrepancy for inverse text normalization (in red). 34
5.7 Example of hallucinations when using k-beam search decoding with the

vanilla Whisper tiny on the AMI 100h test split. Note that 255 is the
maximal generation length set during evaluation. 35

5.8 Comparison of different decoding strategies with the vanilla Whisper tiny
evaluated on the AMI 100h test split. The best metrics per dataset are
highlighted. 37

5.9 Evolution of the WER metrics for the different vanilla Whisper models on
the AMI test split. 38

5.10 WER (%) comparison between the vanilla tiny and medium Whisper models
evaluated on the ESBDC dataset. The best metrics per dataset are highlighted. 39

5.11 Examples of disfluencies removed (in red) by Whisper. Examples are taken
from validation split of AMI. 40

5.12 Examples of non-focused transcriptions (in red) from the vanilla medium
Whisper on the validation split of AMI. 42

5.13 Impact of the errors from the vanilla Whisper on the WER metrics. 42

xx List of tables

6.1 WER metrics (%) comparison between the vanilla and fine-tuned tiny
Whisper models evaluated on the LibriSpeech clean test dataset. Fine-tuning
was performed on the train split of LibriSpeech clean. The best metrics per
dataset are highlighted. 44

6.2 WER metrics (%) comparison between the vanilla and fine-tuned tiny Whis-
per models evaluated on the AMI test dataset. Fine-tuning was performed on
the train split of AMI. The best metrics per dataset are highlighted. 44

6.3 WER (%) comparison between the vanilla and fine-tuned tiny Whisper
models evaluated on the ESBDC dataset. Fine-tuning was performed on the
train split of AMI. The best metrics per dataset are highlighted. 45

6.4 WER (%) comparison between the vanilla and fine-tuned tiny Whisper
models evaluated on the MLS dataset. Fine-tuning was performed on the
train split of AMI. The best metrics per dataset are highlighted. 46

6.5 Perplexity comparison between the vanilla and fine-tuned tiny Whisper
models evaluated on the ESBDC and MLS dataset groups. 48

6.6 Impact of teacher normalization during 1-best KD on the WER on the AMI
test set. The best metrics for the 1-best KD results are highlighted. 50

6.7 Impact of the excess tokens filter on the WER on the train split of AMI. . . 51
6.8 Example of gzip compression ratios for Whisper medium’s predictions on AMI. 52
6.9 Impact of filtering based on the difference of the gzip ratios between the

teacher and the labels on the validation split of AMI. 52
6.10 Evolution of the WER on the validation split of AMI. The best metric for

each filter is highlighted. 56
6.11 WER metrics for 1-best unsupervised KD compared to other Whisper models

on AMI test. The best metrics for the distilled model are highlighted. . . . 57
6.12 Orthographic WER metrics comparison for default fine-tuning and 1-best KD. 58
6.13 WER metrics for word-level unsupervised KD compared to other Whisper

models on AMI validation. The best metrics for the distilled model are
highlighted. 59

6.14 WER metrics for K-best unsupervised KD compared to other Whisper models
on AMI validation. The best metrics for the distilled model are highlighted. 60

6.15 WER metrics for the 3-best unsupervised KD compared to other Whisper
models on AMI test. The best metrics for the distilled model are highlighted. 61

6.16 Impact of λ on the WER (%) for the FAD dataset group after fine-tuning
on AMI for 3000 steps with EWC. The best metrics among the fine-tuned
models are highlighted. 63

List of tables xxi

6.17 Impact of the dataset used for estimating the EWC parameters on the WER
(%) for the FAD dataset group. Fine-tuning with tEWC was performed on
AMI for 3000 steps. The best metrics among the fine-tuned models are
highlighted. 64

6.18 Impact of EWC on the out-of-task WER of Whisper tiny on the MLS
dataset. Fine-tuning was performed on the train split of AMI. The best
metrics among the fine-tuned models and per dataset are highlighted. . . . 65

6.19 Examples of pseudo-transcriptions generated by the vanilla Whisper tiny
on arbitrary examples from LibriSpeech clean. The gzip compression ratios
are for the pseudo-French transcriptions. 67

6.20 Impact of γ on the WER (%) of Whisper tiny fine-tuned using TAC and
evaluated on the validation split of AMI. 68

6.21 Example of pseudo-French transcriptions for the different Whisper sizes. . . 69

A.1 Details about the ESB dataset group. 79
A.2 Details about the ESBDC dataset group. 80
A.3 Details about the MLS dataset. 80
A.4 Details about the FAD dataset. 81

Chapter 1

Introduction

Large pre-trained models are a subset of deep learning models trained on massive amounts of
data. They also exhibit a remarkable capacity to solve complex problems like understanding
human text or generating human-like images. At the time of writing, the trend is to go
with larger and larger pre-trained models. This tendency is motivated by the scaling laws
introduced by OpenAI in [35] and can be witnessed for speech as well (see Figure 1.1,
[62, 43, 24, 5, 32, 14, 72, 13, 4, 57, 55]). However, many challenges remain to be tackled.
Notably, the substantial number of parameters in these models makes them computationally
expensive and slow at inference. Additionally, a separate issue arises when fine-tuning
models to incorporate new tasks, as this process often leads to the forgetting of previously
acquired knowledge. This is problematic as a robust and generic model is desirable. This
dissertation investigates methods to solve both these issues.

Fig. 1.1 Timeline of Transformer-based large pre-trained models for
speech. For models with several sizes, the largest was considered.

2 Introduction

The focus of this thesis is on Automatic Speech Recognition (ASR) large pre-trained
models, which aim at transcribing spoken words into written text. In September 2023,
Radford et al. [57] introduced Whisper, the state-of-the-art ASR model at the time of writing.
For this reason, we chose to focus on Whisper for this thesis.

The first challenge of interest is the trade-off between performance and model size. As
large pre-trained models have a substantial number of weights, they are computationally
expensive, too slow for real-time applications, and too heavy to deploy on mobile devices
with limited resources. Reducing the size of a model can be achieved with model compression
techniques such as weight pruning [26, 25, 74, 61], low-rank weight decomposition [12],
parameter sharing [41, 36], quantization [34], and binarization. Knowledge distillation, first
introduced by Hinton, [29], takes a different approach: it aims to transfer the knowledge from
a large model (the teacher) to a smaller one (the student). At its core, distillation teaches the
student to mimic the output logits of the teacher for a classification task. This form of training
is effective as the teacher’s logits (soft labels) contain additional information about the
model’s uncertainty compared to fine-tuning, which only provides a binary reference (hard
labels). As knowledge distillation has proved very successful in the literature [60, 45, 65],
it will be the method of interest in this thesis. Two unsupervised distillation methods are
explored: the word-level distillation and the K-best sequence-level distillation [38]. Word-
level distillation consists of applying distillation for each element of the reference sequence.
However, inference uses the tokens the model has generated at previous time steps as the
previous ground-truth target tokens are no longer available. Consequently, this discrepancy
between training and generation during scoring is likely to hamper the performance of the
trained model [7]. For this reason, sequence-level distillation generates K sequences using
beam search with the teacher model and then teaches the student to mimic the teacher’s
probabilities over these K sequences.

Fig. 1.2 Knowledge distillation solves the trade-off between performance
and model size.

The second challenge is about achieving continual learning (also known as lifelong
learning or incremental learning), which aims to train models to progressively acquire and

3

integrate new knowledge over time without forgetting previously learned information. While
this is particularly interesting for adapting to new data trends and for preventing unnecessary
training, continual learning is non-trivial since fine-tuning a pre-trained model for a new task
usually causes catastrophic forgetting [48, 58, 19]. A few popular continual learning methods
comprise Learning without Forgetting [42], Memory Aware Synapses [2], or to simply
interleave examples from the old datasets within the new one [10]. This thesis will focus
on Elastic Weight Consolidation (EWC) [39]. EWC uses the observed Fisher information
matrix to identify important parameters relative to the previous tasks during the pre-training
phase. Fine-tuning is then modified to prevent large deviations in these important parameters.
Moreover, we have contributed to a new method called Task Alignment Consolidation (TAC).
This novel method considers regularization from the prediction space without needing data
used for pre-training. To be more precise, using the original copied model and the currently
trained one, it transcribes audio spoken in language X while being prompted to transcribe
using a different language Y , resulting in words in Y that sound similar to the reference
text in X . Then, at each training step, the currently trained model is taught to mimic the
pseudo-transcriptions of the original model.

Besides, this work could be used to develop a new language assessment tool ALTA
(Cambridge University Institute for Automated Language Teaching and Assessment). By
distilling Whisper on the ALTA’s non-native English ASR dataset, we aim to create a
cost-efficient model for speech recognition while maintaining high-performance standards.
Eventually, preserving the multilingual capabilities of Whisper should prove interesting for
transcribing speech from people alternating between different languages (code-switching).

This report comprises six other chapters: Chapter 2 describes ASR in greater detail
and looks at the technical details of Whisper. Chapter 3 defines knowledge distillation and
introduces the different methods that will be assessed throughout this thesis. Chapter 4
introduces the concept of continual learning and highlights two methods to prevent forgetting
during fine-tuning. Chapter 5 discusses the experimental setup created before the experiments,
including the datasets used and how these will be evaluated. Chapter 6 is the results
and discussion section, which displays the overall results for unsupervised distillation and
continual learning. Finally, Chapter 7 is the conclusion section which rounds off the main
findings of this thesis and highlights promising lines for future work.

Chapter 2

Automatic Speech Recognition

2.1 Background

2.1.1 Feature extractor

Speech - like all sounds - is a wave that propagates through a medium e.g. the air. To be
processed, stored, and used by a computer, speech must be converted into discrete values.
A common and effective discrete representation for speech is the mel spectrogram, adapted
to the human ear’s non-linear frequency response. To create a mel spectrogram, the audio
is split into short audio frames. Then, a Fourier Transform algorithm is used to obtain a
spectrogram. Finally, the spectrogram frequencies are mapped to the mel scale, which is
performed by multiplying the spectrogram by a set of filters called mel filterbanks at each
time step. As the example from Figure 2.1 shows, the spectrogram signal is more uniformly
spread at each time step.

Fig. 2.1 Illustration of the mel scale transformation.

6 Automatic Speech Recognition

2.1.2 Tokenizer

Because machine learning models can only process numbers, we need to transform text
inputs into numerical data. Although character-to-index mapping can achieve this, one can
hypothesize that a character on its own contains almost no signal about the semantics of
a sentence. Thus, we are interested in finding the most meaningful text representation for
a given model and, if possible, the smallest representation. Tokenization - the process of
breaking down a text into smaller units - provides such a solution. These units are called
tokens and can be words, characters, or subwords, depending on the type of tokenization
strategy. In particular, the BPE tokenizer [64] is trained by iteratively merging the most
frequent pairs of subwords - initially all Unicode characters present in the training set - until
the desired vocabulary size is reached.

2.1.3 End-to-end ASR models

End-to-end models are popular for ASR as they directly convert spoken language into text
without intermediate steps, making the pipeline simpler and quite often more performant.
Three popular approaches comprise the Connectionist Temporal Classification (CTC) models
[23], the Recurrent Neural Network Transducer (RNN-T) [22], and attention-based models
[6, 67].

CTC

CTC models like Wav2Vec [62], Wav2Vec2 [5], HuBERT [32], and WavLM [13] achieved
competitive performances over the last few years. At its core, a CTC model operates on a
one-to-one mapping between audio frames and outputs and achieves alignment by repeating
symbols (often phonemes) and inserting blank symbols. However, CTC wrongly assumes
independence between the different outputs and an external language model has to be
manually added through interpolation or shallow fusion for better performance.

RNN-T

RNN-T solves the independence issue of the CTC models by introducing an encoder-
predictor-joiner architecture. While the encoder generated features for the current audio
frame, the predictor is in charge of producing features from the previously generated outputs.
The joiner then combines the encoder’s and the predictor’s features to either predict a new
element for the generated sequence while keeping the focus on the current audio frame or
to skip output generation and focus on the next audio frame at the next time step. Note

2.2 Whisper 7

that ontrarily to CTC and attention-based models, RNN-T is suitable for online inference
[27, 73].

Attention-based

Attention models have an encoder-decoder architecture designed to handle sequential data
to effectively capture long-range dependencies and patterns thanks to self-attention. As the
name suggests, self-attention computes attention weights for the input sequence elements
with respect to themselves which is not possible for the RNN-T.

2.2 Whisper

Whisper, an open-source end-to-end ASR model developed by OpenAI [57] and released in
September 2023, will be the model of interest in this thesis. It was pre-trained on a massive
680,000-hour dataset of diverse audio and is also a multitasking model that can perform
multilingual speech recognition, speech translation, language identification, voice activity
detection, and utterance timestamping.

Fig. 2.2 Whisper’s architecture as presented by Radford et al. [57].

8 Automatic Speech Recognition

2.2.1 Architecture

Whisper is based on the Transformer’s architecture. Thus, it takes as input an audio spectro-
gram obtained using a mel spectrogram and outputs a sequence of text tokens obtained using
a BPE tokenizer. More precisely, the encoder encodes the spectrogram to form a sequence of
hidden states. Finally, the decoder predicts text tokens in an auto-regressive fashion while
being conditioned on previously generated tokens and the encoder’s hidden states. This
process is shown in Figure 2.2). Finally, it is interesting to highlight that Whisper’s encoder
is equivalent to an acoustic model and the decoder to an implicit language model because it
processes tokens in an auto-regressive way.

2.2.2 Multi-task pre-training

Whisper’s vocabulary comprises several special tokens that are used to implement multi-
tasking during training and inference. First, the start-of-transcript token is followed by a
language identification and a task special token, where the task can be either about transcrip-
tion or translation from a supported language to English. Second, OpenAI added a specific
format to tell Whisper to predict timestamps (triggered by removing the <|notimestamps|>
token) and to detect voice activity (<|nospeech|>).

Fig. 2.3 Whisper’s multi-task format as presented by Radford et al. [57].

The Whisper model itself was trained using the regular teacher-forced cross-entropy. As
a reminder, teacher forcing is a technique where the ground-truth output from the previous
time step is used as input to the decoder at the current time step. This guarantees that the
model probabilities and the ground-truth labels are compared using the same history.

2.2.3 Trade-off between model size and latency

OpenAI released several pre-trained Whisper models with different sizes, ranging from 39M
parameters for the smallest model (tiny) to 1.55B for the largest (large-v2). As we are
interested in having a model with quick inference time, we decided to benchmark the mean
inference time of the different Whisper models. The methodology was the following. First,

2.2 Whisper 9

we picked a fixed arbitrary audio sample. Then, for each model size, we first ran inference
with greedy decoding 10 times to warm up the system and ensure that the model was properly
loaded in the GPU. Then, we timed and ran the inference 100 times. The experiment was run
on an Ampere A100 Nvidia GPU. Results are shown in Table 2.1.

Model Layers Width Heads Parameters (M) Mean inference time (ms)

tiny 4 384 6 39 102.12 ± 12.47
base 6 512 8 74 133.90 ± 13.07
small 12 768 12 244 241.57 ± 0.72
medium 24 1024 16 769 452.83 ± 1.42
large-v2 32 1280 20 1550 661.02 ± 1.22

Table 2.1 Evolution of the number of the mean inference time with respect
to the number of parameters in the different Whisper models.

2.2.4 Decoding strategies

Because of its auto-regressive nature, Whisper models the likelihood of a sequence of tokens
y1:T with the following conditional probability:

p(y1:T | Y0,x1:L) =
T

∏
t=1

p(yt | y1:t−1,Y0,x1:L) (2.1)

where Y0 is the initial prompt, and x1:L is the audio feature extracted by the encoder. For
Whisper, an example of an initial prompt is Y0 = (<|startoftranscript|>, <|en|>,
<|transcribe|>) where the last two tokens indicate that we are interesting in transcribing
English.

Decoding the optimal sequence for such a model is non-trivial for a few key reasons:

• For a vocabulary of size N and maximum sequence length T , there are O(NT) possible
sequences. Thus, exhaustively searching the whole space is intractable.

• The optimal choice for the next word requires looking several tokens ahead to see what
words yield the best overall sequence.

• Choosing an incorrect word early on skews all future predictions down the wrong path.
Thus, the decoding algorithm needs to be robust to its own mistakes.

• Decoding needs to happen quickly at inference time to be useful and cheap.

Keeping these reasons in mind, we will compare 3 methods of decoding for Whisper:
greedy search, k-beam search, and sampling.

10 Automatic Speech Recognition

Greedy search

At inference time, greedy search selects the highest probability word predicted by the model
each time it generates the next word. For instance, assume we have already generated a
sentence y1:t . The word yt+1 is picked such that:

∀t > 1,yt+1 = argmaxy p(y | y1:t) (2.2)

Greedy search is fast as it runs in O(NT) where N is the vocabulary size and T is the
sequence length. However, it only considers the single most likely word at each step rather
than looking ahead to find the best overall sequence. This often leads to a sub-optimal
sequence.

K-beam search

Instead of selecting the highest probability token at each decoding step like in greedy
search, beam search decoding maintains a list of the K most probable next tokens, where
K is called the beam size. The next set of beam sequences is chosen by considering all
possible next-token extensions of the existing set and by selecting the K extensions with
the highest probabilities. The process is repeated until we reach the maximum length or an
end-of-sequence (EOS) token, and the most likely sequence is returned.

Sampling

A simple method to generate more human-like sentences is to randomly sample the next
token yt of a sequence according to the probability distribution p of the model. This can be
expressed by Equation 2.3 using the same notations as Equation 2.1.

∀t ≥ 1,yt+1 ∼ p(y | y1:t ,Y0,x1:L) (2.3)

Sampling is generally used in combination with temperature [31], top-k sampling [18]
and top-p sampling [31] to prevent rare and incoherent tokens from being sampled.

2.2.5 Known issues

The pre-trained Whisper models tend to generate punctuation, capitalization, and phrases
with inverse text normalization (e.g. it would format addresses, time, dates, numbers, and
abbreviations). Moreover, they often remove disfluencies (e.g. repetitions, stutters, hesita-
tions...). While this choice of formatting improves the readability of the output transcriptions,

2.2 Whisper 11

there is a risk of a formatting misalignment with a given dataset. Ma et al. [46] have also
demonstrated that the previous issues can be easily solved by fine-tuning or soft-prompting
(training a few embeddings that got prepended to the decoder inputs) with limited available
data.

As a generative model, Whisper can sometimes generate non-sense transcriptions referred
to as hallucinations. In particular, one common form of hallucination consists of repetitions
[31]. We hypothesize that as rare as they might be, hallucinations can severely hamper
distillation as the student could be taught to hallucinate further. For reference, examples
of such issues are shown in Table 2.2. Finally, it is worth mentioning that repetition-based
hallucinations don’t affect CTC models because of their one-to-one alignment between audio
frames and outputs.

Category Reference Whisper output

Casing/punc-
tuation

no no no no let’s do the lounge corner No, no, no, no. Let’s do
the lounge corner.

Inverse text
normalization

twenty percent of fifteen dollars seventy
three

20% of $15.73

Disfluencies uh um it’s uh easier to uh to lose uh th things
uh like that on the computer uh

it’s easier to do things like
that on the computer

Hallucina-
tions

yeah that’s quite impressive actually yes yes yes yes yes yes yes
... yes

Table 2.2 Examples of issues with Whisper’s transcriptions.

Chapter 3

Knowledge distillation

At the time of writing, the trend in deep learning is to go with larger and larger pre-trained
models. This assumption holds true for ASR models as well (see Figure 1.1 from chapter 1).
In order to make inference less expensive, we are interested in model compression methods.
Because recent studies [50, 69] have proved that parameters were usually redundant in
pre-trained models, the first idea that comes to mind is to remove the unnecessary weights
of a model by setting them to zero. This process is called pruning and has been widely
explored in the literature [26, 25, 74, 61]. Additionally, low-rank weight decomposition
[12] and parameter sharing [41, 36] can reduce the total number of parameters of the
model. Quantization [34] approaches the problem from a different angle. While the number
of weights is untouched, quantization proposes to represent model parameters with low-
precision 8-bit integers instead of the usual 32-bit floating points. Not only do quantized
weights take less space, but inference can be performed entirely with faster integer arithmetic.
Model binarization, a more extreme version of quantization as weights are turned into
booleans, was also demonstrated to be successful in the literature [15, 45]. Knowledge
distillation, first introduced by Hinton, [29], takes a different approach: it aims to transfer
the knowledge from a large model (the teacher) to a smaller and more weight-efficient one
(the student). For a classification task, the student is trained to mimic the teacher’s class
distribution. As the teacher’s distribution (soft labels) contains additional information about
the relationships between classes and the model’s uncertainty, the distillation signal is much
richer than during fine-tuning with cross-entropy which is based on a binary reference (hard
labels). An example of successful knowledge distillation is DistilBERT, a distilled version of
BERT with only 60% of its size but 97% of its language understanding performance [60].
This thesis will focus on knowledge distillation, as we want to take advantage of the different
Whisper sizes pre-trained by OpenAI. Note that, to the best of our knowledge and at the time
of writing, only Shao et al. have published about distillation on Whisper [65].

14 Knowledge distillation

3.1 Background

Knowledge distillation was introduced by Hinton for classification tasks [29]. This method
suggests training the student (distribution p) to mimic the teacher model (distribution q).
Compared to the default cross-entropy loss, which employs one-hot distribution at the
reference class (hard probabilities), distillation is interesting as it involves using the teacher’s
distribution (soft probabilities) over all classes. This provides more insights about other
classes associated with a given data point, e.g. two classes with similar scores are more likely
to share common characteristics.

Let x ∈ Rd a vector of d-dimensional features, z(x) = [z1(x) . . .zK(x)] ∈ RK the logit
output of the last layer of the teacher model with K the number of classes. To convert
these logit scores into valid probabilities, let’s introduce the softmax function φ : zk(x) 7→

exp(zk(x))
∑ j exp(z j(x))

. However, a well-trained teacher model is likely to generate highly confident

output scores. Consequently, the student model may encounter difficulties in capturing the
signal from the non-dominant class. To address this challenge, a temperature hyperparameter
τ is introduced, which is applied to the teacher distribution q right before the softmax function.
The bigger τ , the smoother the distribution (see Figure 3.1).

Fig. 3.1 Impact of the temperature τ on the distribution of the teacher’s
predictions q′(y|x) for 4 classes. The original distribution is given for
τ = 1.

Hence, for a given example x, we have for each class k ∈ [|1,K|]:

q′(y = k|x) = φ(zk(x)) =
exp(zk(x)/τ)

∑ j exp
(
z j(x)/τ

) (3.1)

A few limiting behaviors are worth noticing:

• τ ∼ 0+ yields the mode distribution 1
k∈[|1,K|]

{
k = argmax

j∈[|1,K|]

[
q′j(x)

]}

3.1 Background 15

• τ = 1 yields the original q distribution

• τ →+∞ yields the uniform distribution U {1,K}.

We now want to compare the two distributions q′ and p. The Kullback-Leibler divergence
DKL measures how different the 2 distributions are given a known example with features x.
Therefore, it is a good candidate for our loss:

DKL(q′(·|x)∥p(·|x)) =
K

∑
k=1

q′(y = k|x) log
(

q′(y = k|x)
p(y = k|x)

)
(3.2)

Because we will run back-propagation and gradient descent to train our model, a fac-
tor 1/τ2 will appear in the gradient computation with respect to x. Simply multiplying
DKL(q′(·|x)∥p(·|x)) by τ2 will compensate for the additional factor:

LKD = τ
2DKL(q′(·|x)∥p(·|x)) (3.3)

Empirically, it was shown that adding a weighted cross-entropy loss term LCE function
of the training set gives better results as the teacher can still make wrong predictions:

Lstudent = αLCE +(1−α)LKD (3.4)

The entire process is summarized in Figure 3.2.

Fig. 3.2 Knowledge distillation process for a supervised classification task.

16 Knowledge distillation

3.2 Word-level distillation

Word-level knowledge distillation is a straightforward first approach to adapting Hinton’s
distillation to a sequence-to-sequence model. It consists of using matching the token distribu-
tion at each time step in a teacher-forced fashion. The process is mathematically described in
Equation 3.5 and can be visualized in Figure 3.3.

LWORD-KD = τ
2

T

∑
t=1

|V |

∑
k=1

[
p′ (yt = k | x1:L,y<t) log

(
p′ (yt = k | x1:L,y<t)

q(yt = k | x1:L,y<t)

)]
(3.5)

with:

• x1:L the sequence of audio features

• T the target length

• V the target vocabulary set

• y = [y1, . . . ,yT] be random variable sequences representing the target sentence

• S the set of all possible sequences

• τ is the temperature

• q′ the teacher distribution softened with temperature τ

• p the student distribution

Fig. 3.3 The word-level distillation process (at each time step).

Interpolating this new loss term with cross-entropy loss, we get:

Lstudent = αLCE +(1−α)LWORD-KD (3.6)

3.3 Sequence-level distillation 17

While word-level distillation is normally used for supervised training, we can also easily
adapt them to work in an unsupervised fashion. Doing so is straightforward as we simply
need to replace the references used for the cross-entropy loss with the teacher’s predictions.

3.3 Sequence-level distillation

The problem with word-level distillation is that it fails to take the sequential aspect of the
ASR outputs into account. In particular, the disparity between training (teacher-forced) and
inference (using the previously generated token) can lead to errors that accumulate rapidly
throughout the generated sequence [7]. To tackle this issue, we will consider sequence-level
knowledge distillation introduced by Kim et al. [38] with a new loss function LSEQ-KD

that involves the probability over all possible sentences. This loss function is defined in
Equation 3.7. The same mathematical notations from section 3.2 will be reused here. Y will
be used instead of y1:T as the length of the output sequence isn’t fixed here.

LSEQ-KD =− ∑
Y∈S

[q(Y | x1:L) log p(Y | x1:L)] (3.7)

Interpolating this new loss term with cross-entropy loss, we get:

Lstudent = αLCE +(1−α)LSEQ-KD (3.8)

Note that Kim et al. only considered sequence-level KD with α = 0 as they raised
concerns about the reference and the teacher predictions to be samples from quite different
distributions. Consequently, we will only consider α = 0 in our experiments, except if we
state otherwise. The process can be visualized for each generated sentence in Figure 3.4.

Fig. 3.4 The sequence-level distillation process.

18 Knowledge distillation

Notice that the sum for the LWORD-KD in Equation 3.5 contains an infinite number of
terms as a sequence can be arbitrarily long. Thus, the sequence-level loss is intractable.

3.3.1 1-best distillation

To solve the intractability problem, we can approximate the teacher distribution q with its
mode [38].

q(Y | x1:L)∼ 1

{
Y = argmax

Y′∈S

[
q
(
Y′ | x1:L

)]}
(3.9)

Let Ŷ be the output of a N-beam search on q(·|x1:L). Using the new q approximation in
Equation 3.7 holds:

LSEQ−KD ≈− ∑
Y∈S

[
1{Y = Ŷ} log p(Y | x1:L)

]
≈− log p(Y = Ŷ | x1:L)

(3.10)

This approximation yields what will refer to as the 1-best sequence-level distillation. In
particular, the distillation loss is no longer intractable as the only expensive needed operation
is to approximate the mode using N-beam search. Note that 1-best KD is equivalent to
replacing the references with the teacher output sequences followed by training using the
usual teacher-forced cross-entropy loss. Therefore, one might see 1-best KD as a form of
unsupervised fine-tuning.

3.3.2 K-best distillation

To have a more precise approximation, we can also use the K-best sequences from an N-beam
search to approximate the teacher distribution q, where K ≤ N.

q(Y | x1:L)≈

{ q(Y|x1:L)
∑Y∈SK q(Y′|x1:L)

if Y ∈ SK

0 otherwise
(3.11)

where SK is the N-best list from beam search.
Thus, we can rewrite LSEQ−KD as:

LSEQ−KD ≈− ∑
Y∈SK

[
q(Y | x1:L)

∑Y∈SK q(Y′ | x1:L)
log p(Y | x1:L)

]
(3.12)

3.3 Sequence-level distillation 19

This particular form of K-best knowledge distillation will be referred to as uniform K-best.
A novel method introduced in this work is using rank-based exponential decay weighting for
the K-best sequences. We will thus refer to this new method as ranked K-best.

LSEQ−KD ≈− ∑
Y∈SK

[
wk

q(Y | x1:L)

∑Y∈SK q(Y′ | x1:L)
log p(Y | x1:L)

]
(3.13)

where the wk are defined by:

∀k ∈ [|1,K|], wk =
e−β (k−1)

∑
K
l=1 e−β (l−1)

(3.14)

and where β ∈ R+ is a hyperparameter to tune. Note that the wk are built so much that
all the weights have values between 0 and 1, and their sum equals 1. The process for the
K-best ranked KD is shown in Figure 3.5.

Fig. 3.5 The K-best distillation process.

Looking at Figure 3.6, the {wk}k∈[|1,K|] gets closer to a discrete uniform distribution on
U {1,K} when β → 0+. The equality holds when β = 0. When β = 0, the K-best uniform
KD is - ignoring a multiplying factor - a special case of the K-best ranked KD. Finally, if
using the same beam size N, K-best ranked KD is equivalent to 1-best KD when β →+∞.

Fig. 3.6 Distribution of the weights wk for the 5-best ranked approximation
sequence-level distillation method and for different values of β .

Chapter 4

Continual learning

While knowledge distillation is a useful training method, the student model only learns one
task and, just like fine-tuning, is susceptible to forgetting about what it had learned previously.
This phenomenon is often referred to as catastrophic forgetting [19] and can be explained
by the model adjusting its weights to minimize the loss for the new task, often leading to
interference with the weights that encode information from previous tasks. Thus, we are
interested in continual learning (also known as lifelong learning or incremental learning),
which aims at training models to progressively acquire and integrate new knowledge over
time without forgetting previously learned information.

In order to implement continual learning, it is possible to keep all or part of the previous
datasets the model was trained on and to interleave examples within the new dataset [10]. For
this reason, one can identify important parameters relative to the previous tasks during the
pre-training phase. Fine-tuning would then be modified to prevent these important parameters
from deviating too much. Elastic Weight Consolidation [39] implements this strategy by
measuring the task importance of the weights using the observed Fisher information matrix.
Another method is Memory Aware Synapses [2], which assesses the parameter’s importance
by measuring the impact of a small weight perturbation on the output. However, previous
data is not always available, especially for large pre-trained models for which only the model
weights get publicly released. Therefore, Learning without Forgetting [42] proposes to
make a copy of the original model and to use it to force the newly trained one to match its
predictions on the previous tasks. This thesis will first focus on Elastic Weight Consolidation
(EWC).

22 Continual learning

4.1 Elastic Weight Consolidation

Elastic Weight Consolidation (EWC) is a technique introduced by Kirkpatrick et al. [39]
to address catastrophic forgetting. At its core, EWC identifies the important parameters
relative to the previous tasks learned during the pre-training phase. Using a regularization
term weighted by the per-parameter importance, fine-tuning would then be modified to
prevent these important parameters from deviating too much while allowing the network
to adapt to new tasks using the less important weights. This is to contrast with other
regularization methods like the L2 regularization which prevent overfitting, but often at
the cost of performance for both the old and the new tasks. This process is illustrated in
Figure 4.1.

Fig. 4.1 Comparison of training trajectories using EWC. The intersection
of the blue and orange subsets is where we want our model to have its
parameters. θ ⋆

A is the vector that contains the optimal weights for the
model under task A.

4.1.1 Proof

To find out the form of a regularization term suitable for EWC, let’s reformulate our original
problem. We will consider two tasks to simplify our study: A is our original task and B is
the new task we would like to train our model on. We will use DA = {x(i)A ,y(i)A }i∈[|1,NA|] and

DB = {x(i)B ,y(i)B }i∈[|1,NB|] to refer to the data associated with the given task. Our goal is to
maximize the posterior likelihood of the model weights θ ∈ RP knowing the data for both
tasks A and B [1, 33]. The objective function is, therefore:

max
θ∈RP

{ℓ(θ) = log(p(θ | DA, DB))} (4.1)

Because A is our first task, we want to use the Bayes rule with respect to p(·|DA):

4.1 Elastic Weight Consolidation 23

log(p(θ | DA, DB)) = log(p(DB | DA,θ))+ log(p(θ | DA))− log(p(DB | DA))

= log(p(DB | θ))+ log(p(θ | DA))− log(p(DB | DA))
(4.2)

In Equation 4.2, log(p(DB | θ)) can be obtained from the model’s output logits and
log(p(DB)) is independent from θ . However, log(p(θ | DA)) has no explicit expression
and is therefore intractable. Kirkpatrick et al. [39] propose to approximate the posterior
likelihood for task A using a Laplace approximation based on the work of Mackay [47]. Let’s
derive this approximation to clearly understand the underlying assumptions of the Laplace
approximation.

Let’s denote the log-likelihood ℓ(θ) = log(p(θ | DA)) and θ ⋆
A the weights of the model

optimized under task A. The second-order Taylor expansion of ℓ(θ) around θ ⋆
A writes down

as:

ℓ(θ) = ℓ(θ ⋆
A)+

(
∂ℓ(θ)

∂θ

∣∣∣∣
θ⋆

A

)
(θ −θ

⋆
A)

⊤+
1
2
(θ −θ

⋆
A)

⊤
(

∂ 2ℓ(θ)

∂ 2θ

∣∣∣∣
θ⋆

A

)
(θ −θ

⋆
A)

+ O
θ∼θ⋆

A

(
(θ −θ

⋆
A)

2
) (4.3)

Neglecting the terms of order 3 and more, and noting that ∂ℓ(θ)
∂θ

∣∣∣
θ⋆

A

= 0, we get:

ℓ(θ)≈ ℓ(θ ⋆
A)+

1
2
(θ −θ

⋆
A)

⊤
(

∂ 2ℓ(θ)

∂ 2θ

∣∣∣∣
θ⋆

A

)
(θ −θ

⋆
A) (4.4)

Going back to the non-log space, we can identify our probability density function with
the density of a Gaussian-distributed random variable, such that:

p(θ | DA)∼ N (θ ⋆
A, Σ) (4.5)

where:

Σ =

(
− ∂ 2(log(p(θ | DA)))

∂ 2θ

∣∣∣∣
θ⋆

A

)−1

(4.6)

To summarize, we approximated the intractable distribution log(p(θ |DA)) with a normal
distribution that closely matches the shape of the original distribution around its mode.
However, computing log(p(θ | DA)) is usually intractable. Assume DA = {x(i)A ,y(i)A }i∈[|1,NA|]
with the samples being independent and identically distributed (iid). We will denote p(xA)

24 Continual learning

and p(yA) as their respective common distributions. We will use the Bayes rule to invert the
probabilities and express the intractable posterior with the likelihood and the prior:

p(θ | DA) ∝ p(DA | θ)p(θ)

∝ p(yA | θ ,xA)
NA p(θ) (iid)

(4.7)

Going back to the log space:

log p(θ | DA) = NA log p(yA | θ ,xA)+ log p(θ)+C1 (4.8)

where C1 ∈ R is a constant with respect to θ .
Assume the parameters follow a zero-mean isometric Gaussian prior, i.e. θ ∼N

(
0, 1

λ
Ip
)

where λ ∈ R+ and Ip ∈ Mp×p(R) is the identity matrix. Therefore, we have:

log p(θ) ∝ λθ
⊤

θ (4.9)

Hence:

∂ 2 logp(θ)

∂θ 2 = 2λ J (4.10)

where J is a matrix full of ones.
Now, Equation 4.6 gives:

Σ
−1 = NA

(
∂ 2(log((yA | θ ,xA)

∂θ 2

)∣∣∣∣
θ⋆

A

+2λ J (4.11)

If we further assume that λ J ≪ NA

(
∂ 2(log((yA|θ ,xA)

∂θ 2

)∣∣∣
θ⋆

A

(which we can consider true if

we have a high enough value for NA), we can infer:

Σ
−1 ≈

(
∂ 2(log(p(DA | θ)))

∂θ 2

)∣∣∣∣
θ⋆

A

(4.12)

Let’s put this aside for a moment and let’s show that the variance of our Laplace approxi-
mation is actually related to the observed Fisher information matrix F̃A at θ ⋆

A. Therefore,
let’s first derive an expression of the Fisher information matrix FA:

FA = Varp(θ |D)

[(
∂ (log(p(DA | θ)))

∂θ

)∣∣∣∣
θ⋆

A

]
(4.13)

4.1 Elastic Weight Consolidation 25

Let the score vector Sθ⋆
A
=
(

∂ (log(p(DA|θ)))
∂θ

)∣∣∣
θ⋆

A

. Using the König-Huygens theorem, we

get:

FA = Ep(θ |D)

[
Sθ⋆

A
ST

θ⋆
A

]
−
(
Ep(θ |D)

[
Sθ⋆

A

])(
Ep(θ |D)

[
Sθ⋆

A

])T
(4.14)

Assuming the regularity conditions of the Leibniz integral rule for differentiation under
the integral sign hold, and using Ep(θ |D)p(θ | D) = 1, we get that the Fisher information
matrix is uniquely defined by the second moment of the score vector:

FA = Ep(θ |D)

((∂ (log(p(DA | θ)))

∂θ

)(
∂ (log(p(DA | θ)))

∂θ

)⊤
)∣∣∣∣∣

θ⋆
A

 (4.15)

Moreover, under a few extra regularity conditions that we will assume satisfied here, we
have:

FA =−Ep(θ |D)

[
∂ 2(log(p(DA | θ)))

∂θ 2

∣∣∣∣
θ⋆

A

]
(4.16)

where θ ⋆
A is the vector that contains the optimal weights for the model for the training set

for task A.
Now, as a reminder, the observed Fisher information matrix at θ ⋆

A is derived from the
Fisher information matrix by considering the random variable θ as a fixed observation. Thus,
we can now infer the observed Fisher information matrix on θ , denoted F̃A:

F̃A =−
(

∂ 2(log(p(DA | θ)))

∂θ 2

)∣∣∣∣
θ⋆

A

(4.17)

Now we can go back to Equation 4.12 and observe that Σ = F̃A
−1

. Therefore, we can
identify the invert of the observed Fisher information matrix in Equation 4.5:

p(θ | DA)∼ N
(

θ
⋆
A, F̃A

−1)
(4.18)

With our new approximation p(θ | DA)∼ N
(

θ ⋆
A,F̃A

−1)
, we can now simplify Equa-

tion 4.2:

log(p(θ | DA, DB)) = log(p(DB | θ))+
1
2
(θ −θ

⋆
A)

⊤ F̃A (θ −θ
⋆
A)+C2 (4.19)

26 Continual learning

where C2 ∈ R is a constant with respect to θ .
Apart, let’s define REWC such that:

REWC(θ) =
1
2
(θ −θ

⋆
A)

⊤ F̃A (θ −θ
⋆
A) (4.20)

Now, we can infer the loss function for EWC:

LEWC = LB +λREWC(θ) (4.21)

where:

• LEWC is the complete loss function to fine-tune using EWC

• LB is the original loss used to learn task B

• λ ∈ R∗
+ is a hyperparameter we introduced to have more control over the importance

of task B compared to task A (λ = 1 if we strictly derive the result from Equation 4.19).

4.1.2 Implementation

To implement EWC, we need to estimate the first two moments of N
(

θ ⋆
A,F̃A

−1)
. We will

refer to them as the EWC parameters in this thesis 1. For the mean θ ⋆
A, we can store the value

of the model weights after training for task A. For the variance, we need to compute the
observed Fisher information matrix (see Equation 4.15), defined by a first-order gradient.
To compute the gradient, we will use the auto-diff capabilities of PyTorch to compute the
first-order derivative of the log-likelihood with respect to task A by simply running inference
on the dataset A. Because PyTorch operates on a batch level, let’s derive the equation for F̃A

with respect to batches of samples.
Let’s denote:

• Nbatch is the number of batches for the dataset DA

• For all i ∈ [|1,Nbatch|], Ai is the i-th batch for the dataset DA

• DA =
Nbatch⋃
i=1

DA,i

• x(n)A,i the n-th example in the i-th batch DA,i and y(n)A,i its associated label

1It is interesting to note that having access to the pre-computed EWC parameters for the previous task would
have been enough. Assuming EWC is efficient, it would then be good practice to release them alongside the
future foundation large pre-trained model’s weights.

4.1 Elastic Weight Consolidation 27

Assuming the samples are independent and identically distributed, we get:

F̃A =
Nbatch

∑
i=1

|DA,i|

∑
n=1



∂ (log(p(y(n)A,i | xA,i, θ)))

∂θ

∂ (log(p(y(n)A,i | xA,i, θ)))

∂θ

⊤

∣∣∣∣∣∣∣
θ⋆

A


(4.22)

Going back to Equation 4.20, we have two matrix operations with a total time complexity
of O(P2) where P is the total number of parameters. Another problem comes with the
memory complexity of storing F̃A in O(P2). Thus, Kirkpatrick et al. decided to further
approximate F̃A by its diagonal matrix, which we will denote diag{F(A)

1 , . . . ,F(A)
P } [39].

Therefore:

∀p ∈ [|1,P|],F(A)
p =

[(
∂ (log(p(DA | θ)))

∂θp

)∣∣∣∣
θ⋆

A

]2

(4.23)

Using Equation 4.22, we can also infer the batch-wise expression of diag{F(A)
1 , . . . ,F(A)

P }:

∀p ∈ [|1,P|],F(A)
p =

Nbatch

∑
i=1

|DA,i|

∑
n=1


∂ (log(p(y(n)A,i | xA,i, θ)))

∂θp

∣∣∣∣∣∣
θ⋆

A


2

(4.24)

Finally, Equation 4.20 can be further simplified as:

LEWC = LB +λREWC(θ)

≈ LB +
λ

2

P

∑
p=1

F(A)
p
(
θp −θ

⋆
A,p
)2 (4.25)

Note that computing REWC in Equation 4.25 necessitates both a time complexity and a
space complexity of O(P), which is a significant improvement from the previous complexities
in O(P2).

28 Continual learning

4.2 Task Alignment Consolidation

While EWC tackles forgetting by applying regularization from the parameter space, we
want to regularize the model directly from the prediction space because we hypothesize that
considering the fully generated sequences is more meaningful. An additional challenge is
that we might not have the dataset used for the original task. For the last issue, Li et al.
proposed Learning without Forgetting (LwF) and experimented on it on computer vision
classification tasks [42]. Task Alignment Consolidation (TAC) is a novel method we have
developed that aims at adapting LwF for sequence-to-sequence ASR multitask models like
Whisper.

4.2.1 Definition

TAC aims at preserving the non-English weights during training by making the model
consistently bad at predicting, e.g., French from English audio. Let Ntask be the number of
non-target tasks we want our model to remember after training. For all n ∈ [|1,Ntask|], let
Rn be the penalty term associated with the n-th task, which is a similarity measure between
the original model’s output and the current trained one. We can then define the TAC penalty
term RTAC:

RTAC =
1

Ntask

Ntask

∑
n=1

Rn (4.26)

Then, we can infer the final TAC loss:

LTAC = L + γRTAC

= L +
γ

Ntask

Ntask

∑
n=1

Rn
(4.27)

where:

• L is the original loss of interest i.e. the loss for the new task

• γ ∈ R∗
+ the amount of regularization for TAC

• RTAC is the negative similarity between the original model and the current trained
sequences.

Examples of relevant negative similarity functions are the negative cross-entropy and the
KL divergence - both computed in a teacher-forced fashion.

4.2 Task Alignment Consolidation 29

4.2.2 Implementation

Whisper takes two special tokens as inputs before the audio features: <|language|> and
<|task|>. Thus, we can prompt Whisper with these tokens to encourage Whisper to generate
outputs for the tasks and the languages we want to preserve. 2 Although the model will
likely output gibberish transcriptions - which we will refer to as pseudo-transcriptions -
we hypothesize that the generated sequences will still align with Whisper’s out-of-task
capabilities. For instance, we hypothesize that, if prompted to transcribe French from English
audio, Whisper will output French words that sound similar to the reference English ones.
Thus, fine-tuning with the TAC regularization should force the model to keep the non-English
weights primarily untouched and a fortiori prevent forgetting. The generic procedure for
training using TAC is shown in Figure 4.2.

Fig. 4.2 TAC training strategy for fine-tuning Whisper on an English
transcription task while tackling forgetting on French transcription.

Looking back on both EWC and TAC, we want to highlight that the two methods are
based on opposite assumptions. While EWC assumes the model’s nodes related to different
languages to be distinct, TAC is built on the premise that they are entangled to a certain
extent. Consequently, we expect that at most one of both continual learning will work.

2Initially, we wanted to align the English→X translations instead of the X transcriptions where X is the
language to preserve as the outputs would not be gibberish anymore. However, at the time of writing, Whisper
only supports X→English translation.

Chapter 5

Experimental setup

Now that we have all the theoretical background explained, we can shift our attention to
the preliminary decisions we have to make before running our experiments. First, we will
introduce all the training and evaluation datasets that will be used for this project. Second,
we will define our evaluation framework. Last but not least, we will evaluate the pre-trained
Whisper models - which we will refer to as vanilla - to get our baseline figures.

5.1 Datasets

All the datasets at hand have their reference text upper-cased. Knowing that Whisper
wasn’t pre-trained on fully upper-cased text, we hypothesized and empirically confirmed that
Whisper couldn’t learn with this formatting. Consequently, we decided to lowercase all the
references of the datasets at hand.

5.1.1 Target datasets

The data has been downloaded using HuggingFace’s datasets [40] to make the experiments
easily reproducible. We filtered out all the examples with audio lengths not longer than 30
seconds and those with empty references. Each training dataset will be divided into 3 splits:
train, validation, and test. The training split is a subset of the available data used to train a
machine learning model. The validation split is a subset of data used to monitor the metric of
interest (e.g. the WER) during training and to perform hyperparameter tuning. The test set is
an independent subset of held-out data that is used to evaluate the final performance of the
trained model.

https://github.com/huggingface/datasets

32 Experimental setup

LibriSpeech clean

The first target dataset is LibriSpeech clean [53]. It is a widely used ASR dataset that consists
of English speech recordings derived from audiobooks in the LibriVox project. The dataset
covers a diverse range of speakers, reading materials, and acoustic conditions. For training,
we will use the 100h-long training split. Details about the dataset can be found in Table 5.1.

Split # examples Total duration (h)

Train 28539 100.6
Validation 2703 5.4
Test 2620 5.4

Table 5.1 Details about the LibriSpeech clean dataset.

The Augmented Multi-party Interaction dataset (AMI)

The Augmented Multi-party Interaction (AMI) is a 100-hour corpus of meeting recordings
[9]. This report will only consider the IHM split which so consists of audio recorded with
microphones close to the speakers. Yet, the AMI-IHM (referred to as AMI for the rest of
this thesis) dataset is still much noisier than LibriSpeech and contains plenty of hesitations
and repetitions. However, because our end goal is to work on the ALTA dataset which is
also about conversational speech, we hypothesize that working on AMI will provide a good
indication of what level of performance we will be able to achieve for ALTA. Therefore, a
particular focus will be shown on AMI compared to LibriSpeech. Details about the dataset
can be found in Table 5.2.

Split # examples Total duration (h)

Train 108492 77.86
Validation 12643 8.68
Test 12643 5.70

Table 5.2 Details about the AMI-IHM 100h dataset.

5.1.2 Evaluation datasets

To evaluate Whisper on the different tasks of interest, we created three dataset groups to
structure the way we will present our results: ESB diagnostic custom (ESBDC), MultiLin-
gual LibriSpeech dataset (MLS) [56], and Forgetting Assessment Dataset (FAD). A partial
summary is shown in Table 5.3 while full details can be found in Appendix A.

5.2 Text normalization strategy 33

datasets Multilingual Description

ESBDC 8 Used for out-of-distribution evaluation
MLS 8 ✓ Used for out-of-task evaluation
FAD 3 ✓ AMI, TED-LIUM, and MLS French

Table 5.3 Evaluation dataset groups used in this thesis.

5.2 Text normalization strategy

5.2.1 Normalized evaluation

There is a wide range of textual representations for a same spoken content. For instance,
it is unclear whether a number should be written with digits or with letters, or whether
we should always use contractions in transcriptions. While the raw WER penalizes ASR
models for innocuous differences, we want to mitigate the impact of linguistic variations
to have a more robust metric in practice. Text normalization proposes to solve this issue
by standardizing these diverse forms. For this purpose, the Whisper paper [57] introduced
two normalizers. First, basic normalization removing casing and punctuation. The second
normalizer is specific to English and introduces various rule-based edits (hesitation removal,
number normalization, British to American spelling...). In this thesis, the English normalizer
will be used for all English transcription tasks while the basic one will be used for non-English
transcriptions.

While lower WERs are desirable, generating easy-to-read text is equally important as
our work ultimately aims at transcribing audio into text destined to be read by humans.
Thus, we should preserve casing and punctuation if available. While all our target sets
are lowercased (see subsection 5.1.1), we might be interested in taking advantage of the
casing and punctuation of the teacher outputs (see subsection 2.2.5) during distillation as the
prosodic information contains a valuable signal for training [37]. All the possible pre and
post-normalization strategies are compared in Table 5.4. This table motivated our choice to
train our models on non-normalized transcriptions but to evaluate them with normalization.

5.2.2 Teacher normalization for knowledge distillation

Normalization is crucial for knowledge distillation as the formatting learned by the pre-
trained Whisper models might not be the same as the one of the target dataset. For example,
while the vanilla Whisper is pre-trained to use casing and punctuation, all references are
lower-cased and without punctuation. At evaluation time, this issue is negligible because of
normalization subsection 5.2.1. However, we hypothesize that formatting will be a problem

34 Experimental setup

Train Eval Pros Cons

None None
* Predict casing/punctuation
* One logic for train/eval * Prediction WER higher

None Normalize * Predict casing/punctuation
* WER for predictions is lower * Different logic for train/eval

Normalize Normalize
* One logic for train/eval
* WER for predictions is lower

* No prosodic signal for train
* No casing/punctuation

Table 5.4 Comparison between the different normalization strategies avail-
able. The highlighted row is the normalization strategy we will use.

for knowledge distillation: if we use both the reference and the raw teacher outputs during
knowledge distillation, we may confuse the student as it would get taught two forms of
formatting simultaneously. Finally, we noticed that most teacher predictions started with a
whitespace. We also hypothesize that this extra whitespace will be detrimental to distillation.

To solve these issues, we propose to remove all punctuation (except apostrophes as they
are present in the references) and trailing whitespaces from the teacher outputs. An example
of teacher post-processing is shown in Table 5.5.

Reference "yeah i would suggest that too"

Teacher output
Raw " Yeah, I would suggest that too."
Casing/punctuation removed " yeah i would suggest that too"
Trailing whitespaces removed "Yeah, I would suggest that too."
Casing/punctuation/trailing whitespaces removed "yeah i would suggest that too"

Table 5.5 Example of the effect of post-processing on the teacher’s gener-
ated predictions.

Invert text normalization is a possible source of increased WER. In particular, we noticed
that the acronyms in AMI’s references are always transcribed with each letter being separated
by a whitespace followed by a dot while the vanilla Whisper would use the usual writing
style. This phenomenon is illustrated in Table 5.6. While this issue wasn’t addressed in this
thesis, we believe that aligning the teacher formatting with the target dataset can improve the
resulting WER significantly.

Reference "i don’t know put all the p. h. d. students together all the professors together
that sort of thing"

Teacher
output

" I don’t know, put all the PhD students together, all the professors together,
and that sort of thing."

Table 5.6 Example of discrepancy for inverse text normalization (in red).

5.3 Decoding strategy 35

5.3 Decoding strategy

5.3.1 Prompting strategy

Whisper can automatically predict the task of interest based on the nature of the input. For
example, if the model is given audio to transcribe, the model will automatically infer the
language that should be used. Nonetheless, we can also force Whisper to predict following a
specific task by appending the <|language|> special token followed by the <|task|> right
after the start-of-transcript token. We will refer to this process as forced prompting. In this
thesis, we decided to always use forced prompting before decoding.

5.3.2 Generation strategy

Maximum sequence length

As a generative model, Whisper will keep predicting new tokens until it generates an end-of-
sentence token. This is a problem when Whisper hallucinates, as it can confidently predict
a very long output sequence of gibberish tokens. For this thesis, we empirically set the
maximum length sequence to 255 tokens to limit the output size in case the model get stuck
in a repetition loop.

Decoding strategy

While a larger beam size allows for a broader exploration of possible hypotheses, it can also
lead to potentially suboptimal paths with higher WERs. Thus, we studied the impact of the
beam size for decoding with Whisper.

Looking at the results in Figure 5.1, we observe that the surge in WER is mainly due
to the increased insertion errors. Digging into the predictions with high WER, we showed
in Table 5.7 that Whisper is more likely to be stuck in repetition loops for higher values of
beam sizes.

idx label
k=1 k=5

pred WER (%) pred WER (%)

117 yeah yeah 0 yeah yeah ... yeah [x222] 221
152 yeah you 100 haha haha ... haha [x255] 255
156 yeah hahaha 100 ha ha ... ha [x255] 255

Table 5.7 Example of hallucinations when using k-beam search decoding
with the vanilla Whisper tiny on the AMI 100h test split. Note that 255
is the maximal generation length set during evaluation.

36 Experimental setup

Fig. 5.1 Evolution of the WER metrics for the vanilla Whisper tiny
decoded with K-beam search on AMI test with respect to the beam size K.

Repetitions appear to be common to both greedy search and K-beam search [66, 68].
Holtzman et al. have shown that human-like texts are more "surprising" as the next word
in a sentence is quite often not the one with the highest conditional probability. The same
authors have also demonstrated that the probability of a repeated phrase increases with each
repetition, creating a positive feedback loop. We confirmed that this phenomenon affected
Whisper tiny as well in Figure 5.2.

Fig. 5.2 Evolution of the probability of the next predicted token for an
arbitrary example from AMI validation. The reference is "so we have
oh no what’s that".

5.3 Decoding strategy 37

We compared all the mentioned decoding strategies using the WER on the test split
of AMI. Results are shown in Table 5.8, with hyperparameters chosen according to the
recommendations in the literature.

WER(%) del(%) sub(%) ins(%)

Greedy search 27.73 9.16 12.38 6.19
K-beam search (K = 3) 31.42 8.69 11.12 11.61
K-beam search (K = 5) 48.33 8.57 11.04 28.72
Vanilla sampling 54.32 14.2 23.53 16.59
Top-k sampling (k = 40, τ = 0.7) 31.57 10.3 15.21 6.06
Top-p sampling (p = 0.92) 41.45 11.7 18.66 11.09
Top-k + top-p sampling (k = 40, p = 0.92, τ = 0.7) 30.04 9.82 14.14 6.08

Table 5.8 Comparison of different decoding strategies with the vanilla
Whisper tiny evaluated on the AMI 100h test split. The best metrics per
dataset are highlighted.

Looking at Table 5.8, greedy search is the best decoding strategy. For this reason and for
its low time complexity, we decided to use greedy search for the rest of this thesis.

38 Experimental setup

5.4 Whisper vanilla performance

5.4.1 Results

We decided to use the Whisper implementation from HuggingFace’s transformers [71]
as we measured an 8-time speed-up compared to OpenAI’s implementation. Moreover,
flash attention [16] and mixed precision [51] were used to accelerate inference. So not only
do these choices allow faster training, but they will also reduce the inference costs of the
deployed ASR model for ALTA.

The details of the WER metrics for the vanilla Whisper models evaluated on the test slit
of AMI are shown in Table 5.9. Note that as the large-v2 model could not fit within the
available GPU memory on our hardware, we decided to discard it from this work.

Parameters (M) WER (%) Del (%) Sub (%) Ins (%)

tiny 39 27.74 9.15 12.38 6.21
base 74 22.41 8.99 9.08 4.33
small 244 19.05 8.98 6.69 3.38
medium 769 16.62 8.62 5.74 2.25

Table 5.9 Evolution of the WER metrics for the different vanilla Whisper
models on the AMI test split.

As expected, the larger the model, the lower the WER. To maximize the efficiency of
distillation, we plan to distil the most performant Whisper model into the smallest one.
Hence, we decided to distil medium into tiny (see Figure 5.3).

Fig. 5.3 Evolution of the WER of the vanilla Whisper models with respect
to their model size. The models were evaluated on the AMI 100h test split.

5.4 Whisper vanilla performance 39

We are now interested in comparing the robustness of both the student and the teacher
on the other English ASR datasets from the ESBDC dataset group. Results are shown in
Table 5.10, where ∆rel(WER) is the relative WER reduction.

Vanilla tiny Vanilla medium ∆rel(WER) (%)
Dataset

librispeech clean 7.54 2.88 61.74
librispeech other 16.88 6.04 64.19
common voice 17.19 3.26 81.06
voxpopuli 8.06 4.96 38.46
tedlium 5.18 2.64 49.04
gigaspeech 8.29 4.44 46.40
spgispeech 5.74 2.49 56.66
earnings22 18.54 10.94 40.99
ami 27.74 16.61 40.13

Average 12.79 6.03 52.88

Table 5.10 WER (%) comparison between the vanilla tiny and medium
Whisper models evaluated on the ESBDC dataset. The best metrics per
dataset are highlighted.

In Table 5.10, we can see that the vanilla medium Whisper model performs significantly
better compared to the tiny vanilla model, with an average relative WER reduction of 52%
on the ESBDC dataset group. This further confirms that medium is a promising teacher for
distilling tiny.

5.4.2 Analysis

As we expect the errors of the teacher model to propagate to the student, it is worth analyzing
the nature of these different mistakes for the target distribution.

Disfluency removal

The reference texts for AMI contain disfluencies such as repetitions and hesitations. Although
hesitations will get removed by normalization before WER scoring (see subsection 5.2.1),
we would like to preserve them as they are crucial in assessing the fluency of a candidate
for ALTA’s use case. On the other hand, the repetitions will be more of a problem during
unsupervised distillation as the student will have no way to learn that it should preserve them.
Examples of removed disfluencies are shown in Table 5.11.

40 Experimental setup

References Vanilla medium predictions

so um yeah you got a general f uh f the functions of
the device uh for a d. v. d. player or uh so um the pl
yeah um f for uh playing uh reverse uh

so you’ve got the general func-
tions of the device for a dvd
player for playing reverse data

uh uh o one of uh out of s uh sev um it’s uh easier to
uh to do the th things that are like that on a computer

it’s easier to do things like that on
the computer

Table 5.11 Examples of disfluencies removed (in red) by Whisper. Exam-
ples are taken from validation split of AMI.

Repetition-based hallucinations

We are interested in investigating how often and how strongly repetition-based hallucinations
occur with the teacher Whisper. First, we decided to inspect the difference in number of
output tokens with the ground truth. The distribution of the number of tokens is shown in
Figure 5.4.

(a) LibriSpeech (b) AMI

Fig. 5.4 Evolution of the number of tokens in the medium Whisper’s
outputs with respect to the number of tokens in the references.

We can observe that most predictions have roughly the same number of tokens as the
labels. However, it seems that a few predictions have a significantly higher number of tokens
than they should have. Note that this phenomenon is very rare with less than 0.01% rows of
LibriSpeech and AMI train having more than 50 excess tokens. Yet, repetitions are often
generated until the model reaches the generation length limit. And because the WER is

5.4 Whisper vanilla performance 41

upper-bounded by the number of words, even a few hallucinations can significantly impact
the performance of our model.

Finally, we looked at the relationship between the number of exceeding tokens and the
audio length. For LibriSpeech, repetition-based hallucinations tend to occur for audio longer
than 8 seconds, but no obvious trend could be observed. On the other hand, hallucinations on
AMI are more frequent for audio shorter than 2 seconds. Results are shown in Figure 5.5.

(a) LibriSpeech (b) AMI

Fig. 5.5 Evolution of the exceeding number of tokens generated by the
teacher with respect to the audio length.

Non-focused transcriptions

Whisper tends to transcribe speech from people talking in the background. This is not a
problem for LibriSpeech, which consists of people reading audiobook passages in a noise-
free environment [53]. However, it is problematic for the AMI corpus, which consists of
noisy meeting recordings [9]. While we hypothesize fine-tuning should easily teach Whisper
to focus on the main speaker (a fortiori decrease the insertion word error rate), we believe
we can hardly tackle this problem with unsupervised distillation i.e. without the references
at hand. We will refer to this issue as non-focused transcriptions. A few non-focused
transcriptions from the validation split of AMI 100h are shown in Table 5.12. Finally, to
wrap things up, the impact of the errors from the vanilla Whisper on the WER metrics is also
shown in Table 5.13.

42 Experimental setup

References Vanilla medium teacher predictions

in a two person office In a two person office? No, in a three person office.

no no no no let’s do the lounge cor-
ner

No, no, no, no. Let’s do the lounge corner. The
lounge is in the free room.

i don’t know but it was a good per-
formance creepy

I don’t know, but it was a good performance. Yes,
very. Creepy.

Table 5.12 Examples of non-focused transcriptions (in red) from the
vanilla medium Whisper on the validation split of AMI.

Type of misalignment Del Sub Ins

Disfluencies ✓
Repetition-based hallucinations ✓
Non-focused transcriptions ✓

Table 5.13 Impact of the errors from the vanilla Whisper on the WER
metrics.

Chapter 6

Results and discussion

This chapter is about the results obtained from knowledge distillation and continual learning
and will build up on the theoretical background presented in the previous chapters. In the
first place, we will investigate supervised fine-tuning. Second, we will investigate different
unsupervised distillation methods. Third, we will look at different methods to implement
continual learning.

6.1 Supervised fine-tuning

6.1.1 Results

We fine-tuned the vanilla tiny Whisper model on the 100h train split of LibriSpeech clean.
We used a batch size of 32, AdamW [44] as our optimizer with a scheduler with a warmup
during the first 100 steps followed by a constant learning rate. After trying learning rates in
the range {1e-5, 5e-5, 1e-4, 5e-4}, we obtained the optimal learning rate value of 1e-5.
All models were trained for 5 epochs. We have also investigated three strategies for freezing
the model parameters: not freezing any layer, freezing the encoder, and freezing the decoder.
Freezing the encoder achieved the lowest WER, thus we decided to opt for this strategy
during fine-tuning. Except if stated otherwise, this training configuration will be used for
the rest of this chapter. Fine-tuning results are shown in Table 6.1, where ∆rel(WER) is the
relative WER reduction.

Initially, we had planned to use LibriSpeech clean as the target distribution for knowledge
distillation. However, Table 6.1 shows that the tiny vanilla model already performs very well
on this dataset with a WER of 7.54%. Assuming we manage to reach the medium performance
after distillation, we would end up with a WER of 2.88 i.e. an absolute improvement of
4.66 points. Consequently, it is sensible to pick AMI instead as it has the highest absolute

44 Results and discussion

Vanilla tiny Fine-tuned tiny ∆rel(WER) (%)

WER (%) 7.54 7.14 5.31
Ins (%) 1.21 1.06 12.40
Sub (%) 5.47 5.23 4.39
Del (%) 0.86 0.85 1.16

Table 6.1 WER metrics (%) comparison between the vanilla and fine-tuned
tiny Whisper models evaluated on the LibriSpeech clean test dataset.
Fine-tuning was performed on the train split of LibriSpeech clean. The
best metrics per dataset are highlighted.

WER reduction (11.13 points) between tiny and medium among all the datasets evaluated
in Table 5.10.

Following our previous observations, we fine-tuned Whisper tiny on the AMI train
split. The model was trained for 1 epoch. The same training hyperparameters were used
compared to LibriSpeech, with the exception of the increased number of warmup steps of
600. Fine-tuning results are shown in Table 6.2 and a relative WER reduction of 25.78% is
demonstrated.

Vanilla tiny Fine-tuned tiny ∆rel (%)

WER (%) 27.74 20.59 25.78
Ins (%) 6.19 4.65 24.88
Sub (%) 12.38 10.46 15.51
Del (%) 9.16 5.48 40.18

Table 6.2 WER metrics (%) comparison between the vanilla and fine-tuned
tiny Whisper models evaluated on the AMI test dataset. Fine-tuning was
performed on the train split of AMI. The best metrics per dataset are
highlighted.

6.1.2 Analysis

As discussed in chapter 4, we expect Whisper to forget about the non-target distributions
during fine-tuning on AMI. As we hypothesize distillation will have a similar impact on
forgetting, we will consider the previously fine-tuned model first. To begin with, we will
analyze forgetting when transcribing English speech from other datasets than the target one
(out-of-distribution). Afterward, we will do the same for transcribing non-English speech
(out-of-task).

6.1 Supervised fine-tuning 45

Out-of-distribution English datasets

All measures of out-of-distribution forgetting relative to fine-tuning have been performed
on the ESBDC dataset group. The WER robustness for out-of-distribution English datasets
of the tiny model fine-tuned on AMI can be found in Table 6.3 where ∆rel(WER) is the
relative WER reduction.

Vanilla tiny Fine-tuned tiny ∆rel(WER) (%)
Dataset

In-distribution
AMI 27.74 20.59 25.78

Out-of-distribution
librispeech clean 7.54 12.27 -62.82
librispeech other 16.88 24.52 -45.30
common voice 17.19 26.25 -52.71
voxpopuli 8.06 12.47 -54.80
tedlium 5.16 6.49 -25.78
gigaspeech 8.29 11.04 -33.15
spgispeech 5.74 9.24 -61.06
earnings22 18.54 19.95 -7.60

Out-of-distribution average 10.93 15.28 -42.85
Average 12.79 15.87 -24.04

Table 6.3 WER (%) comparison between the vanilla and fine-tuned tiny
Whisper models evaluated on the ESBDC dataset. Fine-tuning was per-
formed on the train split of AMI. The best metrics per dataset are high-
lighted.

The fine-tuned Whisper’s performance on the out-of-distribution datasets significanlty
worsened with an average relative WER increase of 42.85%. One interesting result is
earnings22 with a much lower relative WER increase of 7.60%. We hypothesize that
the smaller ∆rel(WER) is because the learned AMI distribution was partially relevant to
earnings22 as they are both conversational ASR datasets.

Out-of-task multilingual datasets

All measures of out-of-task forgetting relative to fine-tuning will be performed on the MLS
dataset group. Details about specific data preparation can be found in section A.3. Results
will be reported using the word error rate (WER) after applying the English normalizer
for the English dataset and the basic normalizer for the other languages. The WERs for

46 Results and discussion

the out-of-task multilingual datasets of the tiny model fine-tuned on AMI can be found in
Table 6.4 where ∆rel(WER) is the relative WER reduction.

Vanilla tiny Fine-tuned tiny ∆rel(WER) (%)
Dataset

Dutch 43.27 66.79 -54.36
English 12.21 18.40 -50.70
French 37.15 59.93 -61.32
German 28.31 61.92 -118.70
Italian 44.10 58.60 -32.88
Polish 38.85 61.47 -58.22
Portuguese 35.58 58.52 -64.47
Spanish 22.42 37.81 -68.64

Non-English languages 35.67 57.86 -65.52
Average 32.74 52.93 -61.69

Table 6.4 WER (%) comparison between the vanilla and fine-tuned tiny
Whisper models evaluated on the MLS dataset. Fine-tuning was performed
on the train split of AMI. The best metrics per dataset are highlighted.

Forgetting for the out-of-task datasets (average WER increase of 65.69%) is stronger
than for the out-of-distribution datasets (42.85%). Note that the drop in English was expected
because the MLS English split is out-of-distribution.

Forgetting speed during fine-tuning

We saved the model every 600 steps during the fine-tuning of the tiny Whisper model on
AMI. We took these partially trained checkpoints and evaluated them on the FAD dataset to
know how fast the different WERs evolved with respect to the number of training steps. The
results are shown in Figure 6.1.

As expected, the WER on the in-distribution dataset (AMI) is decreasing with respect
to the number of steps. Second, we observe that the WER of the fine-tuned model on the
out-of-distribution dataset (TED-LIUM) has slightly increased. Third, the WER for the out-
of-task dataset (LibriSpeech French) has increased at a higher rate than for the in-distribution
dataset. Thus, the further the data distribution from the training set used for fine-tuning, the
faster the forgetting. We hypothesize that Whisper’s implicit language model forgot about
the non-English tokens while being fine-tuned on an English dataset, hence the faster drop in
performance for non-English tasks.

6.1 Supervised fine-tuning 47

(a) Absolute WER (b) Relative WER difference

Fig. 6.1 Evolution of WER (%) on the FAD dataset with respect to the
training steps during the supervised fine-tuning of Whisper tiny on AMI.
Each point corresponds to a saved and evaluated checkpoint. Relative
difference is computed with respect to the vanilla model.

Implicit LM

During the process of fine-tuning Whisper on AMI, we noticed that the WER for non-English
datasets exhibited a more rapid and significant increase compared to the English datasets. We
hypothesize that the fine-tuned Whisper’s implicit language model (LM) mostly remembers
English words and has forgotten about non-English words. To confront our assumption, we
will investigate the evolution of the perplexity of the implicit LM for different languages.

Background on perplexity: Perplexity is a metric used to evaluate the performance
of a language model in natural language processing. It measures how well a language
model can predict the probability of a sequence of words. If we have a tokenized sequence
X = (x1, . . . ,xT), then the perplexity of X is defined as:

PPL(X) = exp

[
− 1

T

T

∑
i=1

log pθ (xi | x<i)

]
(6.1)

By extension, we can define the perplexity of a given previously unseen dataset Dtest =

{Xn}n∈[|1,N|] where the Xn =
(

x(n)0 ,x(n)1 , . . . ,x(n)t

)
by taking the average perplexity 1

N ∑
N
n=1 PPL(Xn).

The lower the perplexity value, the better the language model is at predicting tokens on this
dataset. Note that a model with lower perplexity doesn’t necessarily imply it will have lower
WER.

Implementation: Following the procedure introduced by Gong et al. [21], we set the
encoder’s cross-attention weights to zero and simply fed the tokenized reference to the
decoder one token at a time. The procedure is summarized in Figure 6.2.

48 Results and discussion

Fig. 6.2 Process to use the implicit language model in Whisper.

Results: We have evaluated the perplexity of Whisper’s implicit LM for multilingual
transcription. All non-English datasets come from the MLS dataset group (see section A.3).
For the English split, we decided to compute the perplexity over all datasets from ESBDC to
have a diverse enough corpus. Results are shown in Table 6.5, where ∆rel(PPL) is the relative
perplexity reduction.

Vanilla tiny Fine-tuned tiny ∆rel(PPL) (%)

English
ESBDC 381.60 419.29 9.88

Non-English
Dutch 742.98 1246.33 67.75
French 567.23 1045.76 84.36
German 1248.60 2280.35 82.63
Italian 914.80 1466.19 60.27
Polish 1115.00 2399.89 115.24
Portuguese 958.85 1502.66 56.71
Spanish 828.38 1229.63 48.44
Non-English average 910.83 1595.83 73.63

Table 6.5 Perplexity comparison between the vanilla and fine-tuned tiny
Whisper models evaluated on the ESBDC and MLS dataset groups.

While the perplexity for English has slightly increased 9.88%, the perplexity for other
languages has soared up by 73.63% on average. In terms of perplexity after fine-tuning,
non-English perplexities are all more than 3 times higher than for English. Thus, this shows
that the multilingual capabilities of Whisper are greatly affected by fine-tuning in a single
language.

6.1 Supervised fine-tuning 49

Multilingual perplexity evolution during fine-tuning: Finally, we were interested in
knowing how multilingual perplexities evolved during fine-tuning. Similarly to section 52.
we took the saved checkpoints obtained during fine-tuning and evaluated them using the
same datasets as previously. The results are shown in Figure 6.3.

(a) Absolute perplexity (b) Relative perplexity difference

Fig. 6.3 Evolution of perplexity for multilingual transcription with respect
to the training steps during the fine-tuning of Whisper tiny on AMI. Each
point corresponds to a saved and evaluated checkpoint. Relative difference
is computed with respect to the vanilla model.

Looking at Figure 6.3, we observe that the English perplexity is almost constant during
fine-tuning while the perplexities for other languages quickly increase. It is also interesting
to point out that all non-English perplexities seem to increase at the same pace.

50 Results and discussion

6.2 Unsupervised knowledge distillation

While knowledge distillation (KD) is often interpolated with a supervised loss like cross-
entropy (see Equation 3.4), it is also possible to distil a model in an unsupervised fashion by
substituting the references with the teacher outputs. Assuming the teacher model is accurate
enough, this approach would be particularly interesting for ALTA as it would cut down on
the data annotation costs. Therefore, this chapter will only cover the unsupervised KD. All
experiments will use medium as the teacher and tiny as the student. Finally, except if stated
otherwise, the fine-tuned and distilled models were all trained on the train set of AMI until
WER convergence on the validation split.

6.2.1 1-best unsupervised distillation

Teacher normalization

Following our initial discussion in subsection 5.2.2, we will investigate the impact of normal-
izing the teacher-generated sequences prior to KD (see subsection 5.2.2). We ran 1-best KD
with different teacher normalization strategies. Results are shown in Table 6.6.

WER (%) del (%) sub (%) ins (%)

Reference (tiny)
Vanilla 27.74 12.38 9.15 6.21
Default fine-tuning 20.59 5.48 10.46 4.65

Reference (medium)
Vanilla 16.62 8.62 5.74 2.25

1-best KD
(1) Default 27.30 8.86 11.03 7.41
(1)+(2) Remove casing/punctuation 27.07 9.12 11.27 6.68
(1)+(3) Remove trailing whitespaces 26.81 8.91 11.23 6.66
(1)+(2)+(3) 25.56 9.03 11.20 5.32

Table 6.6 Impact of teacher normalization during 1-best KD on the WER
on the AMI test set. The best metrics for the 1-best KD results are high-
lighted.

Teacher normalization was best beneficial to 1-best KD when casing, punctuation, and
trailing whitespace were removed as we observed a WER drop from 27.30% to 25.56%.
Consequently, we will use this teacher normalization strategy for further model distillations.

6.2 Unsupervised knowledge distillation 51

Filtering Whisper’s hallucinations

As we assume that the Whisper hallucinations are detrimental to knowledge distillation, we
aim to create a criterion to efficiently detect and filter out hallucinations.

Filter 1: Excess tokens
We know that hallucinations mostly consist of a large number of repeated tokens (see

Figure 6.4a). Thus, we will filter out all samples where the excess number of tokens in the
teacher output is strictly greater than a threshold δe which we will optimize using grid-search.
To define a relevant grid, we will first experiment with δe = µe +σe ≈ 5.91 where µe is the
mean number of excess tokens and σe its standard deviation on the train split of AMI. Results
are shown in Figure 6.4b and Table 6.7. Although having filtered out only less than 1% of the
dataset and about 1.5% of the available audio, discarding these examples had a significant
drop in WER and insertion errors for the teacher model. However, note that this filter won’t
be used for unsupervised distillation as it is a function of the reference text.

(a) Analysis (b) Proposed filter

Fig. 6.4 Impact of the excess tokens filter on the train split of AMI. The
teacher model is Whisper medium.

% filtered rows % filtered audio ∆ WER ∆ Ins ∆ Sub ∆ Del

0.86 1.52 0.49 0.52 0.03 -0.11

Table 6.7 Impact of the excess tokens filter on the WER on the train split
of AMI.

52 Results and discussion

Filter 2: Teacher gzip compression ratio
The gzip compression algorithm identifies repetitive data in a file, replaces it with shorter

representations, and then encodes the compressed data using a Huffman-based algorithm.
The gzip compression ratio is built on this algorithm and refers to the ratio of the compressed
file size to the original file size. For example, a compression ratio of 4:1 means that the
compressed file is one-fourth of the original file size. As shown in Table 6.8, the gzip
compression ratio of a repetition-based hallucination sequence is indeed higher than a regular
sequence as it’s more compressible. Note that the gzip compression ratio criterion is preferred
over a repetition count one as the repeated pattern can be more than one token long.

Reference Prediction

Text "yeah so uh what
we’ll do is uh"

"So, what we will do is, we will do is, we will do is, we
will do is, we will do is,"

gzip
ratio

0.612 1.844

Table 6.8 Example of gzip compression ratios for Whisper medium’s
predictions on AMI.

The distribution of the gzip ratios of the teacher predictions and of the references is
shown in Figure 6.5a. While most gzip compression ratios are smaller than about 2, quite a
few teachers’ predictions have unusually high values of gzip ratios i.e. greater than 5. We
propose to filter out samples for which the teacher predictions have a gzip ratio above a
certain threshold rgzip, which we will later optimize using grid-search. To determine the
grid-search values, we decided to arbitrarily start with rgzip = µgzip +2σgzip ≈ 1.68 where
µgzip is the mean teacher gzip ratio and σgzip its standard deviation on the train split of AMI.
Results are shown in Figure 6.5b and Table 6.9. Despite having removed 0.05% of the data,
we managed to obtain a decrease of 0.29% in WER and insertion rates.

% filtered rows % filtered audio ∆ WER ∆ Ins ∆ Sub ∆ Del

0.05 0.05 0.29 0.29 0.00 0.00

Table 6.9 Impact of filtering based on the difference of the gzip ratios
between the teacher and the labels on the validation split of AMI.

6.2 Unsupervised knowledge distillation 53

(a) Analysis (b) Proposed filter

Fig. 6.5 Impact of teacher gzip ratio filter on the train split of AMI. The
teacher model is Whisper medium.

54 Results and discussion

Filter 3: Timestamp-based filtering
Assuming Whisper can generate token-level timestamps, we hypothesize that the tokens

generated when hallucinating are likely to have random timestamps or overlap. If this
assumption holds, we could then use the timestamps to efficiently detect hallucinations.
While not present in the original Whisper paper, OpenAI’s implementation relies on the fact
that cross-attention weights at each step represent the relevance of different audio parts to
predicting the current token. By looking at the attention distribution when generating each
token, Whisper can associate audio segments with the token being predicted at that step. So
for each token in the output, Whisper records the audio segments with the highest attention.
This provides token-level timestamps indicating which audio corresponds to each predicted
token. Finally, dynamic time warping [63] is applied to refine the cross-attention alignments
to match token boundaries better. Examples of generated timestamps are shown in Figure 6.6
and Figure 6.7.

Fig. 6.6 Example of token-level time-stamping for a Whisper prediction
without hallucination.

Fig. 6.7 Example of token-leve time-stamping for a Whisper prediction
without hallucination.

6.2 Unsupervised knowledge distillation 55

Further analysis shows that most tokens related to hallucinations share the same times-
tamps. We will refer to these as instant tokens. Thus, can use the ratio of instant tokens in a
sequence to detect and filter the hallucinations out. We can observe in Figure 6.8a that the
examples with a high number of excess tokens - which contains most of the repetition-based
hallucinations - all have values of instant token ratio close to 1. Thus, we will arbitrarily use
rts = 0.925 first (see Figure 6.8b).

(a) Analysis (b) Proposed filter

Fig. 6.8 Evolution of the ratio of instant tokens with respect to the number
of excess teacher tokens.

Recap of all filtering strategies
We ran grid-search for the three previously defined filters. To prevent data leakage,

the WER evaluation was performed on the validation split of AMI. Results are shown in
Table 6.10, where ∆rows,(%) and ∆audio,(%) are respectively the percentage of rows and of total
audio that got filtered out from the training split of AMI.

The filter that provided the best results for 1-best KD is the excess tokens filter. However,
we will discard it as it requires knowing the reference text, making it unsuitable for unsuper-
vised knowledge distilltion. Instead, we decided to use the gzip ratio filter with rgzip = 1.50
as it is the unsupervised filter that yielded the best WER. Therefore, we decided to use gzip
ratio filter with rgzip = 1.50 for the following experiments except if stated otherwise.

56 Results and discussion

Training Validation
∆rows,(%) ∆audio,(%) WER(%) del(%) sub(%) ins(%)

Reference (tiny)
Vanilla 0 0 28.47 12.38 9.15 6.21
Default fine-tuning 0 0 20.85 5.48 10.46 4.65

Reference (medium) 0 0
Vanilla medium 0 0 17.89 9.12 5.90 2.87

1-best KD
(1) Default 0 0 26.71 9.17 10.63 6.90

(1)+(2) Excess tokens filter
δe = 20 0.07 0.10 26.25 9.51 11.16 5.58
δe = 10 0.16 0.25 25.09 8.97 11.29 4.83
δe = 5 0.95 1.49 24.31 9.67 11.19 3.45
δe = 3 3.22 4.71 22.14 8.89 10.18 3.07
δe = 2 7.36 7.42 25.45 9.89 10.89 4.67

(1)+(3) gzip ratio filter
rgzip = 1.00 8.04 25.18 24.16 9.99 9.90 9.99
rgzip = 1.25 0.73 3.18 24.08 9.28 10.11 4.69
rgzip = 1.50 0.08 0.26 23.87 9.20 10.01 4.66
rgzip = 1.75 0.05 0.06 24.28 9.67 10.00 4.61
rgzip = 2.00 0.05 0.05 24.16 8.93 10.18 5.06

(1)+(4) Instant token ratio filter
rts = 0.85 9.21 25.33 24.16 10.17 9.92 4.07
rts = 0.875 3.18 11.73 24.25 10.03 9.79 4.43
rts = 0.90 1.03 3.45 24.28 9.88 10.09 4.31
rts = 0.925 0.14 0.41 24.31 9.14 10.13 5.04
rts = 0.95 0.05 0.05 24.51 9.50 9.92 5.09

Table 6.10 Evolution of the WER on the validation split of AMI. The best
metric for each filter is highlighted.

6.2 Unsupervised knowledge distillation 57

Results of 1-best unsupervised KD

With our new filtering strategy, we ran 1-best unsupervised KD using teacher normalization
and the gzip compression ratio. Results are shown in Table 6.11.

WER (%) del (%) sub (%) ins (%)

Reference (tiny)
Vanilla 27.74 12.38 9.15 6.21
Default fine-tuning 20.59 5.48 10.46 4.65

Reference (medium)
Vanilla 16.62 8.62 5.74 2.25

1-best unsupervised KD
(1) Default 27.30 8.86 11.03 7.41
(1)+(2) Teacher normalization 25.56 9.03 11.20 5.32
(1)+(3) gzip ratio filter 22.80 9.08 10.39 3.33
(1)+(2)+(3) 24.69 8.97 11.31 4.41

Table 6.11 WER metrics for 1-best unsupervised KD compared to other
Whisper models on AMI test. The best metrics for the distilled model are
highlighted.

First, 1-best unsupervised KD achieves the best performance with the gzip compression
ratio filter. It is interesting to notice that while this filter only removed 0.08% of the examples
and 0.26% of the audio from the training set (see Table 6.10, it decreased the WER from
27.30% to 22.80% i.e. a relative drop of 24.58%. On a different note, combining teacher
post-processing and gzip compression filtering has slightly worsened the results compared to
using the gzip filter alone. Moreover, the high deletion rates of the vanilla teacher medium
and the distilled student are peculiar as they are about two times larger compared to default
fine-tuning. We will further investigate this last point.

Analysis

To begin with, we would like to confirm that the student has correctly learned from the teacher.
If that is the case, the orthographic WER (i.e. WER without prior normalization, denoted
WER⊥) of the student against the teacher’s predictions should be similar to the orthographic
WER of the fine-tuned model against the reference as both the teacher’s predictions and the
reference play the same role. Results are shown in Table 6.12.

We observe little to no difference between the two set of WER scores. Thus, we believe
the student has mimicked the teacher to the best of its capabilities. Therefore, we decided to
compare the student predictions with reference and observed a high amount of disfluency

58 Results and discussion

WER(%)
⊥ del(%)

⊥ sub(%)
⊥ ins(%)

⊥

Fine-tuned model against the reference 20.91 4.67 12.03 4.21
1-best student against the teacher’s predictions 20.10 4.15 10.98 4.97

Table 6.12 Orthographic WER metrics comparison for default fine-tuning
and 1-best KD.

removal similar to what was observed in section 5.4.2. Hence, it seems difficult to match
the fine-tuning deletion rate because the teacher model is not aware of the formatting used
when annotating the AMI corpus. We hypothesize that fine-tuning or soft-prompting [46] the
teacher on a small amount of annotated AMI data prior to KD should fix the issue.

6.2 Unsupervised knowledge distillation 59

6.2.2 Word-level unsupervised distillation

To make the word-level KD unsupervised, we replaced the reference with the teacher’s
prediction. Note that this method is all the more interesting as, contrarily to the super-
vised word-level KD, the cross-entropy loss and the KL divergence are based on the same
underlying teacher distribution.

Results

To begin with, we performed a grid search to optimize the hyperparameters for word-level KD.
For simplicity, we only tried different values of α and kept τ = 1 for the temperature based on
empirical results from the literature [45, 65]. Capitalizing the results from subsection 6.2.1,
we will also apply the gzip compression ratio filter. Results for AMI validation are shown in
Table 6.13.

WER(%) del(%) sub(%) ins(%)

Reference (tiny)
Vanilla 28.47 12.38 9.15 6.21
Default fine-tuning 20.85 10.46 5.48 4.65

Reference (medium)
Vanilla 17.89 9.12 5.90 2.87

1-best unsupervised KD
With gzip filter 23.87 9.20 10.01 4.66

Word-level unsupervised KD
α = 0.3, τ = 1, gzip filter 25.56 10.00 10.07 5.48
α = 0.5, τ = 1, gzip filter 25.53 9.97 10.08 5.48
α = 0.8, τ = 1, gzip filter 25.07 9.89 10.08 5.10
α = 0.9, τ = 1, gzip filter 24.66 9.75 10.08 4.82
α = 0.95, τ = 1, gzip filter 24.32 9.69 10.03 4.60

Table 6.13 WER metrics for word-level unsupervised KD compared to
other Whisper models on AMI validation. The best metrics for the distilled
model are highlighted.

Analysis

We observe that the higher α , the lower the WER. As expected, we get closer to the 1-best
unsupervised results when α → 1. Thus, the KL divergence seems to be detrimental to
distillation.

60 Results and discussion

6.2.3 K-best unsupervised distillation

Since 1-best KD gave better results than word-level KD, we will try to improve on the
resulting WER by investigating the K-best unsupervised KD. We used the same gzip filter
as for 1-best but this time we filtered out every example for which at least one of the K
sequences generated by beam-search wouldn’t match the gzip criterion.

Results

First, we evaluated the different 3-best strategies for the AMI validation split. K = 3 was
arbitrarily chosen for all the following experiments. Results are shown in Table 6.14.

WER(%) del(%) sub(%) ins(%)

Reference (tiny)
Vanilla (greedy search) 28.47 12.38 9.15 6.21
Vanilla (3-beam search) 31.42 8.69 11.12 11.61
Default fine-tuning 20.85 10.46 5.48 4.65

Reference (medium)
Vanilla 17.89 9.12 5.90 2.87

1-best unsupervised KD
With gzip filter 23.87 9.20 10.01 4.66

Word-level unsupervised KD
α = 0.95, τ = 1, gzip filter 24.32 9.69 10.03 4.60

3-best unsupervised KD
Uniform + gzip filter 24.83 10.14 10.68 4.01
Ranked (β = 1) + gzip filter 25.06 10.48 10.43 4.15
Ranked (β = 2) + gzip filter 25.08 10.56 10.47 4.05
Ranked (β = 5) + gzip filter 25.11 10.59 10.47 4.05
Ranked (β = 10) + gzip filter 24.96 10.60 10.47 3.90

Table 6.14 WER metrics for K-best unsupervised KD compared to other
Whisper models on AMI validation. The best metrics for the distilled
model are highlighted.

The best 3-best method is the uniform KD. Thus, we will keep this method for the final
WER evaluation on the test split of AMI. Note that even the ranked K-best with β = 10,
which is equivalent to only considering the best sequence for the 3-beam, is more than 1
WER point behind 1-best KD. We can explain this gap because the WER for 3-beam on AMI
is actually higher than for the 1-best i.e. greedy search in our study.

6.2 Unsupervised knowledge distillation 61

WER (%) del (%) sub (%) ins (%)

Reference (tiny)
Vanilla 27.74 12.38 9.15 6.21
Default fine-tuning 20.59 5.48 10.46 4.65

Reference (medium)
Vanilla 16.62 8.62 5.74 2.25

1-best KD
With gzip filter 22.80 9.08 10.39 3.33

Word-level unsupervised KD
α = 0.95, τ = 1, gzip filter 23.93 9.39 10.64 3.89

3-best unsupervised KD
Uniform + gzip filter 23.01 8.99 11.07 2.95
Table 6.15 WER metrics for the 3-best unsupervised KD compared to
other Whisper models on AMI test. The best metrics for the distilled
model are highlighted.

Analysis

3-best didn’t manage to beat 1-best KD. Again we believe that this is due to the poor
performance of the 3-beam search on AMI. We hypothesize that having a dataset for which
the WER would decrease with the K beam size would be beneficial to K-best.

Wrap-up The performance of all the distillation methods is summarized in Figure 6.9.
The best results for unsupervised distillation on AMI were obtained using the 1-best KD with
the gzip filter (rgzip = 1.50), decreasing the WER on the test split from 27.74% to 22.80%
i.e. an absolute drop of 4.94% (or a relative drop of 17.81%). Interestingly, we achieved a
95% size reduction from medium to tiny for a relative WER increase of 67%. While we still
haven’t managed to beat the result of supervised fine-tuning (20.59%), we hypothesize that
fine-tuning or soft-prompting the teacher on a small subset of AMI would fix the formatting
discrepancy mentioned in section 62 and close the WER gap.

62 Results and discussion

Fig. 6.9 Example of time-stamping for a Whisper prediction without
hallucination.

6.3 Continual learning 63

6.3 Continual learning

6.3.1 Elastic Weight Consolidation

EWC requires estimating the EWC parameters and the observed Fisher information matrix
of the pre-trained model. While estimating the weights is straightforward, estimating the
Fisher information matrix demands running inference on the dataset the model was trained
on previously. In the case of Whisper, we don’t have access to the original dataset used by
OpenAI during pre-training. Thus, we will use our target dataset (AMI) as a substitute for
estimating the EWC parameters. We hypothesize that even with this poor dataset proxy, the
fine-tuned model can preserve a fraction of its original multi-task capabilities. All models
will be evaluated on the FAD dataset group (see section A.4).

First, we need to choose a value for the strength of the EWC regularization λ . Thus, we
will perform a grid search for λ ∈ {1e-4,1e-3,1e-2,1e-1,1e-0}. Results are shown in
Table 6.16.

Name AMI MLS French TED-LIUM

References
Vanilla 27.74 37.27 5.18
Default fine-tuning (λ = 0) 20.85 59.21 6.49

Fine-tuning with EWC
λ = 1e-4 22.51 48.87 6.27
λ = 1e-3 25.87 41.13 6.09
λ = 1e-2 26.47 40.41 5.80
λ = 1e-1 27.67 39.62 5.51
λ = 1e+0 27.15 38.55 5.24

Table 6.16 Impact of λ on the WER (%) for the FAD dataset group after
fine-tuning on AMI for 3000 steps with EWC. The best metrics among the
fine-tuned models are highlighted.

As expected, the higher the value of λ , the less important the forgetting on the out-of-task
distribution (MLS French). We are nonetheless concerned that EWC has only slowed down
fine-tuning. Thus, we compared the EWC results with the different checkpoints obtained
during the default fine-tuning from section 52 for AMI and MLS FR. The results are shown
in Figure 6.10. We observed that fine-tuning with EWC performs very similarly to default
fine-tuning. To further confirm our assumption, we fitted a linear regression which had an
R2 score of 0.954. Thus we can assume that the only impact of EWC was to slow down
fine-tuning.

64 Results and discussion

Fig. 6.10 WER pairplot on AMI and MLS French test splits with respect
to λ . The points for default fine-tuning correspond to the different check-
points every 600 steps.

We will now assume that we have an annotated out-of-task dataset at hand that can be used
to estimate the Fisher information matrix. In this view, we will arbitrarily use the MLS FR
training split. After performing a grid-search for λ ∈ {1e-4,1e-3,1e-2,1e-1,1e-0}, we
decided to use λ = 1e-4. Results are shown in Table 6.17. Note that we also experimented
with averaging the EWC parameters obtained with AMI and MLS FR (see the AMI + MLS
FR row).

AMI TED-LIUM MLS FR

References
Vanilla 27.74 5.16 37.15
Default fine-tuning 20.59 6.49 59.93

EWC with parameters estimated from
AMI 22.51 6.27 48.87
MLS FR 21.80 7.27 38.06
AMI + MLS FR 21.38 7.32 38.49

Table 6.17 Impact of the dataset used for estimating the EWC parameters
on the WER (%) for the FAD dataset group. Fine-tuning with tEWC was
performed on AMI for 3000 steps. The best metrics among the fine-tuned
models are highlighted.

6.3 Continual learning 65

Looking at Table 6.17, using fine-tuning with EWC had the expected behavior for tackling
forgetting: we lowered the WER on the target dataset (AMI) and we preserved the original
Whisper performance on the out-of-task distribution (MLS FR). It is interesting to notice that
EWC worsened the performance of the tasks that were not covered by the dataset used for
estimating the EWC parameters. Results for other languages are shown in Table 6.18, where
∆
(EWC)
rel (WER) is the relative difference between the WER of the fine-tuned model without

EWC and with EWC.

Vanilla Fine-tuned Fine-tuned with EWC ∆
(EWC)
rel (WER) (%)

Dataset

Dutch 43.27 66.79 52.61 21.23
English 12.21 18.40 19.09 -3.75
French 37.15 59.93 38.06 36.49
German 28.31 61.92 35.79 42.20
Italian 44.10 58.60 49.83 14.97
Polish 38.85 61.47 53.45 13.05
Portuguese 35.58 58.52 45.07 22.98
Spanish 22.42 37.81 28.42 24.83

Non-English (avg) 35.67 57.86 43.32 25.13
Average 32.74 52.93 40.29 23.88

Table 6.18 Impact of EWC on the out-of-task WER of Whisper tiny on
the MLS dataset. Fine-tuning was performed on the train split of AMI. The
best metrics among the fine-tuned models and per dataset are highlighted.

All non-English languages benefited from EWC regularization. This is all the more
surprising as the EWC weights were estimated using only French data. We hypothesize that
a fraction of the important weights for transcribing French is shared with the ones used for
transcribing other languages. Therefore, we hypothesize that the more similar the language
to French, the more important weights they have in common.

We are also interested in knowing the evolution of WER for both default and EWC using
the parameters estimated from MLS FR. Results are shown in Figure 6.11.

Looking at Figure 6.11, we observe that the WER evolution of AMI with EWC is very
similar to default fine-tuning. Moreover, EWC managed to keep the WER for MLS FR under
no more than 4% of the vanilla performance for the training on 77h of audio. Nonetheless,
preserving French is detrimental to preserving the out-of-distribution performance on TED-
LIUM as the relative WER difference rapidly jumped to more than 30%. For comparison,
the same WER increase was much slower for default fine-tuning.

66 Results and discussion

Fig. 6.11 Evolution of WER (%) on the FAD dataset with respect to the
training steps during the fine-tuning of Whisper tiny on AMI. Each point
corresponds to a saved and evaluated checkpoint. Relative difference is
computed with respect to the vanilla model.

6.3 Continual learning 67

6.3.2 Task Alignment Consolidation

In the previous section, we used EWC to apply regularization within the parameter space.
However, we hypothesize that the closer to the generation we regularize, the more likely we
are to preserve the previous tasks learned by Whisper. For this reason, we are interested in
regularizing directly from the prediction space. As explained in subsection 4.2.2, TAC is
interesting for such a scheme as it doesn’t need the original dataset. Thus, we will assume
that the target set (AMI) is the only dataset available.

The first step in TAC is to prompt Whisper to generate pseudo-transcription i.e. to
transcribe French words from English audio. As expected, Whisper generates French text
that sounds similar to the English words from the audio (see the first row of Table 6.19).

References Transcribe English speech
as French (pseudo-French)

gzip
compression

ratio

nor is mister quilter’s manner less in-
teresting than his matter

N’orise Mr. Quilterre s’en
m’en est intéressant thané le
mâtre.

0.79

he tells us that at this festive season
of the year with christmas and roast
beef looming before us similes drawn
from eating and its results occur most
readily to the mind

Il a dit que cette fois-tu vu
une fois-tu vu une fois-tu vu
une fois-tu vu une fois-tu vu
une fois-tu vu une [...] fois-
tu vu une fois

12.86

Table 6.19 Examples of pseudo-transcriptions generated by the vanilla
Whisper tiny on arbitrary examples from LibriSpeech clean. The gzip
compression ratios are for the pseudo-French transcriptions.

However, we can observe in Figure 6.12 that Whisper frequently suffered from repetition-
based hallucinations like the one shown in the last row of Table 6.19. We hypothesize that
this is due to the poor performance of the vanilla tiny model (37.27% i.e. more than 1 word
out of 3 is wrong). This raises some concerns about the efficiency of the TAC method on
Whisper tiny.

68 Results and discussion

Fig. 6.12 Distribution of the gzip compression ratio of the references and
the predictions of tiny on the AMI test split.

We performed a grid search to optimize the strength of the TAC regularization γ . Results
are shown in Table 6.20.

Name WER AMI (%) WER MLS French (%)

References
Vanilla 28.47 37.15
Default fine-tuning (γ = 0) 23 45.13

Fine-tuning with TAC
γ = 0.01 21.99 49.38
γ = 0.1 23.95 48.29
γ = 1 26.84 48.99

Table 6.20 Impact of γ on the WER (%) of Whisper tiny fine-tuned using
TAC and evaluated on the validation split of AMI.

Looking at Table 6.20, TAC is demonstrated to be an ineffective way of preventing
forgetting during fine-tuning as the out-of-task performances on MLS WER are even worse
than the one obtained with default fine-tuning. The poor results can be explained by two
reasons. First, TAC assumes that the Whisper’s nodes for transcribing different languages
are entangled. However, we know from subsection 6.3.1 that EWC, which is built on the
opposite assumption, performs quite well on tiny. Thus, we expected such results for TAC

6.3 Continual learning 69

on the same model. Our second assumption is that TAC performs poorly because of the poor
French transcription capabilities of tiny (37.15%) on the MLS FR test set (i.e. more than 1
word out of 3 is wrong). In preparation for future work, we analyzed pseudo-transcriptions
for larger sizes of Whisper. To our surprise, not only did the pseudo-transcriptions sound
more like the original English sentence, but the large models (small and medium) seem to
have translated the English audio into French. Hence, we hypothesize TAC would be more
effective on the larger Whisper models.

Reference mister quilter is the apostle of the middle classes and we are glad to
welcome his gospel

French trans-
lation

monsieur quilter est l’apôtre des classes moyennes et nous sommes heureux
d’accueillir son gospel

tiny Le plus de la chasse est de la classe et nous débrouillons l’air de l’air de la
chasse.

base Mr. Quilter est le passé de la classe de la ville, et nous sommes glad de
bienvenue son gosse-boule.

small Mr Quilter est l’époche de la classe moyenne et nous sommes heureux
d’accueillir son gospel.

medium Mr. Quilter est l’apostle des classes du milieu et nous sommes heureux de
la bienvenue dans son Gospèle.

Table 6.21 Example of pseudo-French transcriptions for the different
Whisper sizes.

Chapter 7

Conclusion

The experiments performed in this report first show that naively using the raw teacher outputs
for distillation is inefficient. When used with Whisper tiny as the student and Whisper
medium as the teacher, 1-best distillation yields a poor WER improvement from 27.74%
to 27.30% on the AMI test set. An investigation was conducted to improve distillation
performance by normalizing the teacher’s predictions and filtering out hallucinations. This
approach is sensible for two reasons: firstly, the pre-trained Whisper model might not have
the same formatting as the target dataset, and secondly, the few hallucinations generated
by Whisper are demonstrated to deteriorate the student’s performance during distillation
significantly. Notably, filtering out the teacher’s transcriptions with high values of gzip
compression ratio is demonstrated to be quite effective: while it removes only 0.08% of the
examples and 0.26% of the audio from the training set, the subsequent 1-best yields a much
more reasonable WER decrease from from 27.74% to 22.80% on AMI test, i.e. a 17.81%
relative improvement. If further research is done into distillation, it might be interesting to
study the relationship of the model compression ratio with expected performance gains. With
this in mind, we hypothesize that distilling medium into tiny for a size reduction of 95%
may have been too ambitious as we observed a relative WER increase of 67%. While our
distillation methods are all based on only the output of the teacher model (response-based
knowledge), a complementary experiment could involve the student mimicking the interme-
diate layers of the teacher [59, 65] (feature-based knowledge) to distil in a representation
learning fashion [8]. Additionally, using soft-prompting on a small subset of the target dataset
to adapt the teacher’s formatting seems promising. Further work might also involve trying
different decoding strategies to reduce the frequency of hallucinations (e.g., decoding using
constrained beam search [30], the N-gram penalty [54], or Locally Typical Sampling [49]).

For continual learning, estimating the Fisher information matrix using a non-English
transcription dataset and fine-tuning it with the EWC regularization proves to be an im-

72 Conclusion

pressive candidate for continual learning. Not only does it manage to keep the WER for
French transcription under 4% of the vanilla performance for the whole training, but it also
significantly reduces forgetting for other non-English transcription tasks: compared to default
fine-tuning, EWC achieves an average relative WER drop of 25.13% on the non-English
datasets from Multilingual LibriSpeech. Further work on this task may be best focused on
trying and combining different datasets to estimate the EWC parameters. On the other hand,
continual learning with limited access to the original dataset proved to be an arduous task as
TAC is demonstrated to be inefficient in preserving the multilingual capabilities of Whisper
during fine-tuning on an English dataset. Moreover, using the KL divergence to compare
the pseudo-transcriptions may also lead to better performance for TAC. Finally, it might be
interesting to focus on larger Whisper models as new candidates for TAC: we believe that
having highly entangled cross-lingual representations might facilitate preserving multilingual
transcriptions using only English.

References

[1] Aich, A. (2021). Elastic Weight Consolidation (EWC): Nuts and Bolts.

[2] Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018).
Memory Aware Synapses: Learning what (not) to forget.

[3] Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., Saun-
ders, L., Tyers, F. M., and Weber, G. (2020). Common Voice: A Massively-Multilingual
Speech Corpus.

[4] Babu, A., Wang, C., Tjandra, A., Lakhotia, K., Xu, Q., Goyal, N., Singh, K., von
Platen, P., Saraf, Y., Pino, J., Baevski, A., Conneau, A., and Auli, M. (2021). XLS-R:
Self-supervised Cross-lingual Speech Representation Learning at Scale.

[5] Baevski, A., Zhou, H., Mohamed, A., and Auli, M. (2020). Wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations.

[6] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate.

[7] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled Sampling for
Sequence Prediction with Recurrent Neural Networks.

[8] Bengio, Y., Courville, A., and Vincent, P. (2012). Representation Learning: A Review
and New Perspectives.

[9] Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., Kadlec, J.,
Karaiskos, V., Kraaij, W., Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska, A.,
McCowan, I., Post, W., Reidsma, D., and Wellner, P. (2006). The AMI Meeting Corpus:
A Pre-announcement. In Renals, S. and Bengio, S., editors, Machine Learning for
Multimodal Interaction, volume 3869, pages 28–39. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[10] Castro, F. M., Marín-Jiménez, M. J., Guil, N., Schmid, C., and Alahari, K. (2018).
End-to-End Incremental Learning.

[11] Chen, G., Chai, S., Wang, G., Du, J., Zhang, W.-Q., Weng, C., Su, D., Povey, D.,
Trmal, J., Zhang, J., Jin, M., Khudanpur, S., Watanabe, S., Zhao, S., Zou, W., Li, X.,
Yao, X., Wang, Y., Wang, Y., You, Z., and Yan, Z. (2021a). GigaSpeech: An Evolving,
Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio.

[12] Chen, P. H., Si, S., Li, Y., Chelba, C., and Hsieh, C.-j. (2018). GroupReduce: Block-
Wise Low-Rank Approximation for Neural Language Model Shrinking.

74 References

[13] Chen, S., Wang, C., Chen, Z., Wu, Y., Liu, S., Chen, Z., Li, J., Kanda, N., Yoshioka, T.,
Xiao, X., Wu, J., Zhou, L., Ren, S., Qian, Y., Qian, Y., Wu, J., Zeng, M., Yu, X., and Wei,
F. (2021b). WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing.

[14] Chung, Y.-A., Zhang, Y., Han, W., Chiu, C.-C., Qin, J., Pang, R., and Wu, Y. (2021).
W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-
Supervised Speech Pre-Training.

[15] Courbariaux, M., Bengio, Y., and David, J.-P. (2015). BinaryConnect: Training Deep
Neural Networks with binary weights during propagations.

[16] Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. (2022). FlashAttention: Fast and
Memory-Efficient Exact Attention with IO-Awareness.

[17] Del Rio, M., Delworth, N., Westerman, R., Huang, M., Bhandari, N., Palakapilly, J.,
McNamara, Q., Dong, J., Zelasko, P., and Jette, M. (2021). Earnings-21: A Practical
Benchmark for ASR in the Wild. In Interspeech 2021, pages 3465–3469.

[18] Fan, A., Lewis, M., and Dauphin, Y. (2018). Hierarchical Neural Story Generation.

[19] French, R. (1999). Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences, 3(4):128–135.

[20] Gandhi, S., von Platen, P., and Rush, A. M. (2022). ESB: A Benchmark For Multi-
Domain End-to-End Speech Recognition.

[21] Gong, Z., Saito, D., Li, S., Kawai, H., and Minematsu, N. (2022). Can We Train a
Language Model Inside an End-to-End ASR Model? - Investigating Effective Implicit
Language Modeling.

[22] Graves, A. (2012). Sequence Transduction with Recurrent Neural Networks.

[23] Graves, A., Fernández, S., Gomez, F., and Schmidhuber, J. (2006). Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd International Conference on Machine Learning -
ICML ’06, pages 369–376, Pittsburgh, Pennsylvania. ACM Press.

[24] Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang,
Z., Wu, Y., and Pang, R. (2020). Conformer: Convolution-augmented Transformer for
Speech Recognition.

[25] Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning both Weights and
Connections for Efficient Neural Networks.

[26] Hassibi, B. and Stork, D. (1992). Second order derivatives for network pruning: Optimal
Brain Surgeon. In Hanson, S., Cowan, J., and Giles, C., editors, Advances in Neural
Information Processing Systems, volume 5. Morgan-Kaufmann.

[27] He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I., Alvarez, R., Zhao, D., Rybach,
D., Kannan, A., Wu, Y., Pang, R., Liang, Q., Bhatia, D., Shangguan, Y., Li, B., Pundak,
G., Sim, K. C., Bagby, T., Chang, S.-y., Rao, K., and Gruenstein, A. (2018). Streaming
End-to-end Speech Recognition For Mobile Devices.

References 75

[28] Hernandez, F., Nguyen, V., Ghannay, S., Tomashenko, N., and Estève, Y. (2018). TED-
LIUM 3: Twice as much data and corpus repartition for experiments on speaker adaptation.
volume 11096, pages 198–208.

[29] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge in a Neural
Network.

[30] Hokamp, C. and Liu, Q. (2017). Lexically Constrained Decoding for Sequence Gen-
eration Using Grid Beam Search. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational Linguistics.

[31] Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2020). The Curious Case of
Neural Text Degeneration.

[32] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A.
(2021). HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction
of Hidden Units.

[33] Huszár, F. (2017). On Quadratic Penalties in Elastic Weight Consolidation.

[34] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and
Kalenichenko, D. (2017). Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference.

[35] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J., and Amodei, D. (2020). Scaling Laws for Neural Language Models.

[36] Kim, J. and Kang, P. (2021). K-Wav2vec 2.0: Automatic Speech Recognition based on
Joint Decoding of Graphemes and Syllables.

[37] Kim, J.-H. and Woodland, P. C. (2003). A combined punctuation generation and
speech recognition system and its performance enhancement using prosody. Speech
Communication, 41(4):563–577.

[38] Kim, Y. and Rush, A. M. (2016). Sequence-Level Knowledge Distillation.

[39] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. (2017). Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526.

[40] Lhoest, Q., del Moral, A. V., Jernite, Y., Thakur, A., von Platen, P., Patil, S., Chaumond,
J., Drame, M., Plu, J., Tunstall, L., Davison, J., Šaško, M., Chhablani, G., Malik, B.,
Brandeis, S., Scao, T. L., Sanh, V., Xu, C., Patry, N., McMillan-Major, A., Schmid, P.,
Gugger, S., Delangue, C., Matussière, T., Debut, L., Bekman, S., Cistac, P., Goehringer,
T., Mustar, V., Lagunas, F., Rush, A. M., and Wolf, T. (2021). Datasets: A Community
Library for Natural Language Processing.

[41] Li, X., Qin, T., Yang, J., and Liu, T.-Y. (2016). LightRNN: Memory and Computation-
Efficient Recurrent Neural Networks.

76 References

[42] Li, Z. and Hoiem, D. (2017). Learning without Forgetting.

[43] Liu, A. T., Yang, S.-w., Chi, P.-H., Hsu, P.-c., and Lee, H.-y. (2019). Mockingjay:
Unsupervised Speech Representation Learning with Deep Bidirectional Transformer
Encoders.

[44] Loshchilov, I. and Hutter, F. (2019). Decoupled Weight Decay Regularization.

[45] Ma, R., Liu, Q., and Yu, K. (2019). Highly Efficient Neural Network Language
Model Compression Using Soft Binarization Training. In 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pages 62–69, SG, Singapore. IEEE.

[46] Ma, R., Qian, M., Gales, M. J. F., and Knill, K. M. (2023). Adapting an ASR Foundation
Model for Spoken Language Assessment.

[47] MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation
Networks. Neural Computation, 4(3):448–472.

[48] McCloskey, M. and Cohen, N. J. (1989). Catastrophic Interference in Connectionist
Networks: The Sequential Learning Problem. In Psychology of Learning and Motivation,
volume 24, pages 109–165. Elsevier.

[49] Meister, C., Pimentel, T., Wiher, G., and Cotterell, R. (2022). Locally Typical Sampling.

[50] Michel, P., Levy, O., and Neubig, G. (2019). Are Sixteen Heads Really Better than
One?

[51] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B.,
Houston, M., Kuchaiev, O., Venkatesh, G., and Wu, H. (2018). Mixed Precision Training.

[52] O’Neill, P. K., Lavrukhin, V., Majumdar, S., Noroozi, V., Zhang, Y., Kuchaiev, O.,
Balam, J., Dovzhenko, Y., Freyberg, K., Shulman, M. D., Ginsburg, B., Watanabe, S.,
and Kucsko, G. (2021). SPGISpeech: 5,000 hours of transcribed financial audio for fully
formatted end-to-end speech recognition.

[53] Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: An ASR
corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, South Brisbane,
Queensland, Australia. IEEE.

[54] Paulus, R., Xiong, C., and Socher, R. (2017). A Deep Reinforced Model for Abstractive
Summarization.

[55] Pratap, V., Tjandra, A., Shi, B., Tomasello, P., Babu, A., Kundu, S., Elkahky, A., Ni, Z.,
Vyas, A., Fazel-Zarandi, M., Baevski, A., Adi, Y., Zhang, X., Hsu, W.-N., Conneau, A.,
and Auli, M. (2023). Scaling Speech Technology to 1,000+ Languages.

[56] Pratap, V., Xu, Q., Sriram, A., Synnaeve, G., and Collobert, R. (2020). MLS: A Large-
Scale Multilingual Dataset for Speech Research. In Interspeech 2020, pages 2757–2761.

[57] Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. (2022).
Robust Speech Recognition via Large-Scale Weak Supervision.

References 77

[58] Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed
by learning and forgetting functions. Psychological Review, 97(2):285–308.

[59] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2014).
FitNets: Hints for Thin Deep Nets.

[60] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020a). DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter.

[61] Sanh, V., Wolf, T., and Rush, A. M. (2020b). Movement Pruning: Adaptive Sparsity by
Fine-Tuning.

[62] Schneider, S., Baevski, A., Collobert, R., and Auli, M. (2019). Wav2vec: Unsupervised
Pre-training for Speech Recognition.

[63] Senin, P. (2009). Dynamic time warping algorithm review.

[64] Sennrich, R., Haddow, B., and Birch, A. (2015). Neural Machine Translation of Rare
Words with Subword Units.

[65] Shao, H., Wang, W., Liu, B., Gong, X., Wang, H., and Qian, Y. (2023). Whisper-KDQ:
A Lightweight Whisper via Guided Knowledge Distillation and Quantization for Efficient
ASR.

[66] Shao, L., Gouws, S., Britz, D., Goldie, A., Strope, B., and Kurzweil, R. (2017).
Generating High-Quality and Informative Conversation Responses with Sequence-to-
Sequence Models.

[67] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention Is All You Need.

[68] Vijayakumar, A. K., Cogswell, M., Selvaraju, R. R., Sun, Q., Lee, S., Crandall, D.,
and Batra, D. (2016). Diverse Beam Search: Decoding Diverse Solutions from Neural
Sequence Models.

[69] Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019). Analyzing
Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be
Pruned.

[70] Wang, C., Rivière, M., Lee, A., Wu, A., Talnikar, C., Haziza, D., Williamson, M., Pino,
J., and Dupoux, E. (2021). VoxPopuli: A Large-Scale Multilingual Speech Corpus for
Representation Learning, Semi-Supervised Learning and Interpretation.

[71] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2019).
HuggingFace’s Transformers: State-of-the-art Natural Language Processing.

[72] Zhang, Y., Park, D. S., Han, W., Qin, J., Gulati, A., Shor, J., Jansen, A., Xu, Y., Huang,
Y., Wang, S., Zhou, Z., Li, B., Ma, M., Chan, W., Yu, J., Wang, Y., Cao, L., Sim, K. C.,
Ramabhadran, B., Sainath, T. N., Beaufays, F., Chen, Z., Le, Q. V., Chiu, C.-C., Pang,
R., and Wu, Y. (2021). BigSSL: Exploring the Frontier of Large-Scale Semi-Supervised
Learning for Automatic Speech Recognition.

78 References

[73] Zhang, Y., Qin, J., Park, D. S., Han, W., Chiu, C.-C., Pang, R., Le, Q. V., and Wu,
Y. (2020). Pushing the Limits of Semi-Supervised Learning for Automatic Speech
Recognition.

[74] Zhu, M. and Gupta, S. (2017). To prune, or not to prune: Exploring the efficacy of
pruning for model compression.

Appendix A

Evaluation datasets

This section of the appendix describes how each of the evaluation datasets for this thesis were
prepared. Similarly to subsection 5.1.1, the data has been downloaded using HuggingFace’s
datasets to make the experiments easily reproducible [40].

A.1 End-to-End Speech Benchmark (ESB)

The End-to-End Speech Benchmark (ESB) evaluation dataset is a collection of 8 datasets
first introduced by [20]. Details about each individual dataset are shown in Table A.1.

Dataset Domain Audio length (h)

AMI-IHM [9] Meetings 9
Common Voice (English) [3] Wikipedia 27
Earnings-22 (English) [17] Meetings 5
GigaSpeech [11] Audiobook, podcast, YouTube 40
LibriSpeech (clean+other) [53] Audiobook (LibriVox) 11
SPGISpeech [52] Meetings 100
TED-LIUM [28] TED talks 3
VoxPopuli (English) [70] EU Parliament 5

Table A.1 Details about the ESB dataset group.

Note that the ESB-diagnostic dataset group is an 8-hour lightweight subset of ESB that
can be used for faster iterations.

https://github.com/huggingface/datasets

80 Evaluation datasets

A.2 ESB diagnostic custom (ESBDC)

Both ESB and ESB-diagnostic don’t provide access to the test set of LibriSpeech and AMI,
which are our target training sets. Therefore, we had to create a custom version of ESB-
diagnostic where we properly replaced the missing test splits. For this reason, we will refer to
this dataset group as ESB diagnostic custom (ESBDC). Details about each individual dataset
from ESBDC are shown in Table A.2.

Split Total duration (h)

Librispeech clean 5.4
Librispeech other 5.1
AMI 5.7
Common Voice 1
Voxpopuli 1
TED-LIUM 1
GigaSpeech 1
SPGISpeech 1
Earnings-22 1

Table A.2 Details about the ESBDC dataset group.

A.3 MultiLingual LibriSpeech (MLS)

The MultiLingual LibriSpeech (MLS) evaluation dataset used here is a collection of 8
datasets [56]. MLS consists of 8 ASR subsets: Dutch, English, French, German, Italian,
Polish, Portuguese, and Spanish. Note that the original MLS dataset was slightly modified
because we wanted to reuse the LibriSpeech data from Panayotov et al. [53] for consistency.
Therefore, the English dataset is the result of concatenating the librispeech_clean and
librispeech_other splits. Details about each individual dataset are shown in Table A.3.

Split # examples Total duration (h)

Dutch 3075 4.1
English 5559 10.5
French 2426 7.7
German 3394 16.1
Italian 1262 4.8
Polish 520 2.4
Portuguese 871 4.4
Spanish 2385 9.0

Table A.3 Details about the MLS dataset.

A.4 Forgetting Assessment Dataset (FAD) 81

A.4 Forgetting Assessment Dataset (FAD)

The Forgetting Assessment Dataset (FAD) evaluation dataset is a custom dataset created
for this project that contains a few datasets that cover different ASR tasks. Although it is
redundant with the previous dataset groups, we decided to create it for easier evaluation to
easily evaluate forgetting relative to fine-tuning with respect to the number of training steps.
Details about each individual dataset are shown in Table A.4.

Split Total duration
(h)

Description

AMI 5.7 The AMI test set (see section 34)

TED-LIUM 1.0 The TED-LIUM test set from ESBDC (see section A.2)

MLS
French

7.7 The French test set from MLS (see section A.3)

Table A.4 Details about the FAD dataset.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Automatic Speech Recognition
	2.1 Background
	2.1.1 Feature extractor
	2.1.2 Tokenizer
	2.1.3 End-to-end ASR models

	2.2 Whisper
	2.2.1 Architecture
	2.2.2 Multi-task pre-training
	2.2.3 Trade-off between model size and latency
	2.2.4 Decoding strategies
	2.2.5 Known issues

	3 Knowledge distillation
	3.1 Background
	3.2 Word-level distillation
	3.3 Sequence-level distillation
	3.3.1 1-best distillation
	3.3.2 K-best distillation

	4 Continual learning
	4.1 Elastic Weight Consolidation
	4.1.1 Proof
	4.1.2 Implementation

	4.2 Task Alignment Consolidation
	4.2.1 Definition
	4.2.2 Implementation

	5 Experimental setup
	5.1 Datasets
	5.1.1 Target datasets
	5.1.2 Evaluation datasets

	5.2 Text normalization strategy
	5.2.1 Normalized evaluation
	5.2.2 Teacher normalization for knowledge distillation

	5.3 Decoding strategy
	5.3.1 Prompting strategy
	5.3.2 Generation strategy

	5.4 Whisper vanilla performance
	5.4.1 Results
	5.4.2 Analysis

	6 Results and discussion
	6.1 Supervised fine-tuning
	6.1.1 Results
	6.1.2 Analysis

	6.2 Unsupervised knowledge distillation
	6.2.1 1-best unsupervised distillation
	6.2.2 Word-level unsupervised distillation
	6.2.3 K-best unsupervised distillation

	6.3 Continual learning
	6.3.1 Elastic Weight Consolidation
	6.3.2 Task Alignment Consolidation

	7 Conclusion
	References
	Appendix A Evaluation datasets
	A.1 End-to-End Speech Benchmark (ESB)
	A.2 ESB diagnostic custom (ESBDC)
	A.3 MultiLingual LibriSpeech (MLS)
	A.4 Forgetting Assessment Dataset (FAD)

