
BachBot: Automatic composition in the
style of Bach chorales

Developing, analyzing, and evaluating a deep LSTM model
for musical style

Feynman Liang

Department of Engineering
University of Cambridge

M.Phil in Machine Learning, Speech, and Language Technology

This dissertation is submitted for the degree of
Masters of Philosophy

Churchill College August 2016

I would like to dedicate this thesis to my loving parents, Luping and Yueli, who have
supported me at all steps of my journey through life and academia. And to my sister, Dawn,

whom I am much too sleep-deprived to write a dedication for but you know I love you
regardless.

Declaration

I, Feynman Liang of Churchill College, being a candidate for the M.Phil in Machine Learning,
Speech, and Language Technology, hereby declare that this report and the work described in
it are my own work, unaided except as may be specified below, and that the report does not
contain material that has already been used to any substantial extent for a comparable purpose.

Total word count: 11356

Signed:

Date:

Feynman Liang
August 2016

August 12, 2016

Acknowledgements

I would like to acknowledge Mark Gotham, my primary point of contact for anything music
related. The time he spent teaching me music theory, helping me design experiments, and
providing feedback on intermediate results was invaluable and greatly appreciated.

I would also like to acknowledge my industry sponsors, Matthew Johnson and Jamie Shot-
ton from Microsoft Research Cambridge, for their role proposing the idea of BachBat, provid-
ing computing resources, and and giving me regular feedback on the progress of the project.

In addition, I would like to acknowledge my academic supervisor Bill Byrne for hissupport
guiding me through the thesis writing proces.

Finally, I would like to acknowledge my proofreaders and reviewers, which include all of
the aforementioned as well as Niole Nelson, Kyle Kastner, and Tom Nicholson.

Abstract

This thesis investigates Bach’s composition style using deep sequence learning. We develop
BachBot: an automatic stylistic composition system for composing polyphonic music in the
style of Bach’s chorales.

Our approach encodes music scores into a sequential format, reducing the task to one of se-
quencemodeling. Traditional 𝑁-gram languagemodels are found to be insufficient, prompting
the use of RNN sequence models. We find a 3-layer stacked LSTM performs best and conduct
analyses and evaluations to understand its success and failure modes. Unlike many previous
works, we avoid allowing prior assumptions about music impact model design, opting instead
to build systems that learn rather than ones which encode prior hypotheses. While this is not
the first application of deep LSTM to Bach chorales, our work consists of the following novel
contributions.

First, we devise a sequential encoding for polyphonic music which resolves issues noted by
prior work, including: the ability to determine when notes end and a time-resolution exceeding
all prior work by at least 2×.

Second, we identify neurons which, without any prior knowledge or supervision, have
learned to specifically detect musically meaningful concepts such as chords and cadences.
To our knowledge, this is the first reported reesult demonstrating LSTM is capable of learning
high-level musically-meaningful concepts automatically from data.

Finally, we build a web-based musical Turing test (www.bachbot.com) and evaluate on a
participant pool more than 3× larger than the next-closest comparable study [91]. We find
that a human evaluation study promoted over social media can yield responses from a signif-
icant number (165 at time of writing) of domain experts. After evaluating BachBot on 721
participants, we found that participants could only differentiate BachBot’s generated chorales
from Bach’s originals works only 9% better than random guessing. In other words, generat-
ing stylistically successful Bach chorales is more closed (as a result of BachBot) than open a
problem.

www.bachbot.com

Table of contents

List of figures xv

List of tables xix

Nomenclature xxi

1 Introduction 1
1.1 Motivation . 1
1.2 Research aims and scope . 2
1.3 Organization of the chapters . 2

2 Background 5
2.1 Recurrent neural networks . 5

2.1.1 Notation . 6
2.1.2 The memory cell abstraction . 6
2.1.3 Operations on RNNs: stacking and unrolling 7
2.1.4 Training RNNs and backpropagation through time 8
2.1.5 Long short term memory: solving the vanishing gradient 10

3 Related Work 15
3.1 Prior work in automatic composition . 15

3.1.1 Symbolic rule-based methods . 15
3.1.2 Early connectionist methods . 16
3.1.3 Modern connectionist models . 17

3.2 Automatic stylistic composition . 18
3.2.1 Applications to Bach chorales . 18
3.2.2 Evaluation of automatic composition systems 19

xii Table of contents

4 Automatic stylistic composition with deep LSTM 21
4.1 Constructing a corpus of encoded Bach chorales scores 22

4.1.1 Preprocessing . 22
4.1.2 Sequential encoding of musical data 25

4.2 Design and validation of a generative model for music 28
4.2.1 Training and evaluation criteria . 28
4.2.2 Establishing a baseline with 𝑁-gram language models 29
4.2.3 Description of RNN model hyperparameters 29
4.2.4 Comparison of memory cells on music data 31
4.2.5 Optimizing the LSTM architecture 32
4.2.6 GPU training yields 800% acceleration 34

4.3 Results and comparison . 34

5 Opening the black box: analyzing the learned music representation 35
5.1 Investigation of neuron activation responses to applied stimulus 35

5.1.1 Pooling over frames . 36
5.1.2 Probabilistic piano roll: likely variations of the stimulus 36
5.1.3 Neurons specific to musical concepts 40

6 Chorale harmonization 43
6.1 Adapting the automatic composition model 43

6.1.1 Shortcomings of the proposed model 44
6.2 Datasets . 44
6.3 Results . 45

6.3.1 Error rates harmonizing Bach chorales 45
6.3.2 Harmonizing popular tunes with BachBot 46

7 Large-scale subjective human evaluation 47
7.1 Evaluation framework design . 48

7.1.1 Software architecture . 48
7.1.2 User interface . 48
7.1.3 Question generation . 49
7.1.4 Promoting the study . 50

7.2 Results . 51
7.2.1 Participant backgrounds and demographics 51
7.2.2 BachBot’s performance results . 53

Table of contents xiii

8 Discussion, Conclusion, and Future Work 57
8.1 Discussion and Conclusion . 57
8.2 Summary of contributions . 58
8.3 Extensions and Future Work . 59

8.3.1 Improving harmonization performance 59
8.3.2 Ordering of parts in sequential encoding 59
8.3.3 Extensions to other styles and datasets 59
8.3.4 Analyzing results using music theory 60

References 61

Appendix A Appendix A: A primer on Western music theory 69
A.1 Notes: the basic building blocks . 70

A.1.1 Pitch . 70
A.1.2 Duration . 72
A.1.3 Offset, Measures, and Meter . 73
A.1.4 Piano roll notation . 73

A.2 Tonality in common practice music . 73
A.2.1 Polyphony, chords, and chord progressions 74
A.2.2 Chords: basic units for representing simultaneously sounding notes . 74
A.2.3 Chord progressions, phrases, and cadences 75
A.2.4 Transposition invariance . 76

Appendix B Appendix B: An introduction to neural networks 77
B.1 Neurons: the basic computation unit . 77
B.2 Feedforward neural networks . 78
B.3 Recurrent neural networks . 79

Appendix C Appendix C: Additional Proofs, Figures, and Tables 81
C.1 Sufficient conditions for vanishing gradients 81
C.2 Quantifying the effects of preprocessing . 82
C.3 Discovering neurons specific to musical concepts 84
C.4 Identifying and verifying local optimality of the overall best model 84
C.5 Additional large-scale subjective evaluation results 93

List of figures

2.1 An Elman-type RNN with a single hidden layer. The recurrent hidden state
is illustrated as unit-delayed (denoted by 𝑧−1) feedback edges from the hidden
states to the input layer. The memory cell encapsulating the hidden state is also
shown. 7

2.2 Block diagram representation of a -layer RNN (left) and its corresponding
DAG (right) after unrolling. The blocks labelled with ℎ𝑡 represent memory
cells whose parameters are shared across all times 𝑡. 8

2.3 The gradients accumulated along network edges in BPTT. 9
2.4 Schematic for a single LSTMmemory cell. Notice how the gates 𝑖𝑡, 𝑜𝑡, and 𝑓 𝑡

control access to the constant error carousel (CEC). 12

4.1 First 4 bars of JCB Chorale BWV 185.6 before (top) and after (bottom) pre-
processing. Note the transposition down by a semitone to C-major as well as
quantization of the demisemiquavers in the third bar of the Soprano part. . . . 23

4.2 Piano roll representation of the same 4 bars from fig. 4.1 before and after pre-
processing. Again, note the transposition to C-major and time-quantization
occurring in the Soprano part. 24

4.3 Distortion introduced by quantization to semiquavers 25
4.4 Example encoding of a score containing two chords, both one quaver in dura-

tion and the second one possessing a fermata. Chords are encoded as (MIDI
pitch value, tied to previous frame?) tuples, “|||”’ encodes the ends of frames,
and “(.)” at the start of a chord encodes a fermata. Each “|||” corresponds to
time advancing by a semiquaver . 27

4.5 Left: Token frequencies sorted by rank. Right: log-log plot where a power law
distribution as predicted by Zipf’s law would appear linear. 28

4.6 LSTM and GRUs yield the lowest training loss. Validation loss traces show
all architectures exhibit signs of significant overfitting 31

xvi List of figures

4.7 Dropout acts as a regularizer, resulting in larger training loss but better gen-
eralization as evidenced by lower validation loss. A setting of dropout=0.3
achieves best results for our model. 32

4.8 Training curves for the overall best model. The periodic spikes correspond to
resetting of the LSTM state at the end of a training epoch. 33

5.1 Top: The preprocessed score (BWV 133.6) used as input stimulus with Ro-
man numeral analysis annotations obtained from music21; Bottom: The same
stimulus represented on a piano roll . 37

5.2 Neuron activations after max pooling over frames 38
5.3 Probabilistic piano roll of next note predictions. The model assigns high prob-

ability to fermatas near ends of phrases, suggesting an understanding of phrase
structure in chorales. 39

5.4 Activation profiles demonstrating that neurons have specialized to become highly
specific detectors of musically relevant features 41

6.1 Token error rates (TER) and frame error rates (FER) for various harmonization
tasks . 45

6.2 BachBot’s ATB harmonization to a Twinkle Twinkle Little Star melody 46

7.1 The first page seen by a visitor of http://bachbot.com 49
7.2 User information form presented after clicking “Test Yourself” 50
7.3 Question response interface used for all questions 51
7.4 Geographic distribution of participants . 52
7.5 Demographics of participants . 53
7.6 Proportion of participants correctly discriminatingBach fromBachBot for each

question type. 53
7.7 Proportion of correct responses for each question type and music experience

level. 54
7.8 Proportion of correct responses broken down by individual questions. 55

A.1 Sheet music representation of the first four bars of BWV 133.6 70
A.2 Terhardt’s visual analogy for pitch. Similar to how the viewer of this figuremay

percieve contours not present, pitch describes subjective information received
by the listener even when physical frequencies are absent. 70

A.3 Illustration of an octave in the 12-note chromatic scale on a piano keyboard. . 71
A.4 Scientific pitch notation and sheet music notation of 𝐶 notes at ten different

octaves. 72

http://bachbot.com

List of figures xvii

A.5 Comparison of various note durations [21] 72
A.6 Piano roll notation of the music in fig. A.1 74

B.1 A single neuron first computes an activation 𝑧 and then passes it through an
activation function 𝜎(⋅) . 78

B.2 Graph depiction of a feedforward neural network with 2 hidden layers 79
B.3 Graph representation of an Elman-type RNN. 80

C.1 Distribution of pitches used over Bach chorales corpus. Transposition has re-
sulted in an overall broader range of pitches and increased the counts of pitches
which are in key. 83

C.2 Distribution of pitch classes over Bach chorales corpus. Transposition has in-
creased the counts for pitch classes within the C-major / A-minor scales. . . . 84

C.3 Meter is minimally affected by quantization due to the high resolution used for
time quantization. 84

C.5 Results of grid search (see Section 4.2.5) over LSTM sequence model hyper-
parameters . 84

C.4 Neuron activations over time as the encoded stimulus is processed token-by-token 85
C.6 rnn_size=256 and num_layers=3 yields lowest validation loss. 91
C.7 Validation loss improves initially with increasing network depth but deterio-

rates after > 3 layers. 91
C.8 Validation loss improves initially with higher-dimensional hidden states but

deteriorates after > 256 dimensions. 92
C.9 seq_length=128 and wordvec=32 yields lowest validation loss. 92
C.10 Perturbations about wordvec=32 do not yield significant improvements. . . . 93
C.11 Proportion of correct responses for each question type and age group. 93

List of tables

4.1 Statistics on the preprocessed datasets used throughout our study 26
4.2 Perplexities of baseline 𝑁-gram language models on encoded music data . . 30
4.3 Timing results comparing CPU and GPU training of the overall best model

(section 4.2.5 on page 33) . 34

7.1 Composition of questions on http://bachbot.com 50

A.1 Pitch intervals for the two most important keys [45]. The pitches in a scale can
be found by starting at the tonic and successively offsetting by the given pitch
intervals. 74

A.2 Common chord qualities and their corresponding intervals [45] 75

http://bachbot.com

Nomenclature

Roman Symbols

𝑓 𝑡 forget gate values at time 𝑡

ℎ hidden state (i.e. memory cell contents)

𝑥 layer inputs

𝑖𝑡 input gate values at time 𝑡

𝑁ℎ𝑖𝑑 dimensionality of hidden state

𝑁𝑖𝑛 dimensionality of inputs

𝑁𝑜𝑢𝑡 dimensionality of outputs

𝑦 layer outputs

𝑜𝑡 output gate values at time 𝑡

𝑃 ∗ true probability distribution

̃𝑃 distribution predicted by model

𝑇 total number of timesteps in a sequence

𝑊 weight matrix

�̂� values of fixed tokens in a harmonization

𝑥∗ the optimal harmonization

�̃� the proposed harmonization

Greek Symbols

xxii Nomenclature

𝛼 multi-index of fixed tokens in harmonization

𝛿 Kroneker delta

𝜎 elementwise activation function

𝜃 model parameters

ℰ error or loss

ℰ𝑡 error or loss at time 𝑡

Superscripts

(𝑙) layer index in multi-layer networks

Subscripts

𝑠𝑡 connections from source 𝑠 to target 𝑡

𝑡 time index

Other Symbols

⊙ elementwise multiplication

Acronyms / Abbreviations

A Alto

AT Alto and Tenor

ATB Alto, Tenor, and Bass

B Bass

BPTT Backpropagation Through Time

BWV Bach-Werke-Verzeichnis numbering system for Bach chorales

CEC Constant Error Carousel

CPU Central Processing Unit

DAG Directed Acyclic Graph

FER Frame Error Rate

Nomenclature xxiii

GPU Graphics Processing Unit

LSTM Long Short Term Memory

MIDI Musical Instrument Device Interface

OOV Out Of Vocabulary

RNN Recurrent Neural Network

SATB Soprano, Alto, Tenor, and Bass

S Soprano

TER Token Error Rate

T Tenor

Since I have always preferred making plans to execut-
ing them, I have gravitated towards situations and sys-
tems that, once set into operation, could create music
with little or no intervention onmy part. That is to say,
I tend towards the roles of planner and programmer,
and then become an audience to the results.

Alpern [3]

1
Introduction

1.1 Motivation
Can the style of a particular composer or genre of music be codified into a deterministic com-
putable algorithm? While it may be easy to enumerate some musical rules, reaching consensus
on a formal theory for stylistic composition has proven to be difficult. Even after hundreds of
years of study, many modern music theorists would still feel uncomfortable claiming a “cor-
rect” algorithm for composing music like Bach, Beethoven, or Mozart.

Despite these difficulties, recent advances in computing and progress in modelling tech-
niques has enabled computational modelling to provide novel insights into various musical
phenomena. By offering a method for quantitatively testing theories, computational models
can help us learn more about the various cognitive and perceptual processes related to music
comprehension, production, and style.

One primary use case for computational music models is automatic composition, a task
concerned with algorithmic production of musical compositions. While early automatic com-
position models were predominantly rule-based, the field has experienced an increased interest
in connectionist neural-network models over the last 25 years. The recent empirical triumphs
of deep learning, a specific form of connectionist modelling, has further fueled the renewed
interest in connectionist systems for automatic composition.

2 Introduction

1.2 Research aims and scope
This thesis is concerned with automatic stylistic composition, where the goal is to create a
system capable of generating music in a style similar to a particular composer or genre. We
restrict our attention to a particular class of model: generative probabilistic sequence models
which are learned from data. A generative probabilistic model is desirable because it can be
applied to a variety of automatic composition tasks, including: harmonizing a melody (by
conditioning the model on the melody), automatic composition (by sampling the model), and
scoring (by evaluating the model on a given sequence). Fitting the model to data enables it
to automatically learn the relationships and regularities present throughout the training data,
enabling generation ofmusic which is statistically similar to what was observed during training.

We develop a method for automatic stylistic composition which brings together ideas from
deep learning, language modelling, and music theory. Our motivation stems from recent de-
velopments [60, 65, 39, 95] which have enabled deep learning models to surpass prior state-
of-the-art techniques in domains such as computer vision, natural language processing, and
speech recognition. As it has already shown promise across a wide variety of problem do-
mains, we hypothesized that the application of modern deep learning techniques to automatic
composition would yield similar success.

The aim of our research is to build an automatic composition system capable of imitat-
ing Bach’s composition style on both harmonization and automatic composition tasks in
amanner that an average listener finds indistinguishable fromBach. While the method we
develop is capable of modelling arbitrary polyphonic music compositions, we restrict the scope
of our study to Bach’s chorales. These provide a relatively large corpus by a single composer,
are well understood by music theorists, and are routinely used when teaching music theory.

1.3 Organization of the chapters
The remaining chapters are organized as follows:

Chapter 4 on page 21 describes the construction and evaluation of our final model. Our ap-
proach first encodes music scores into a sequential format. reducing the task to one of sequence
modelling. This type of problem is analogous to that of language modelling in speech research.
Unfortunately, we found that traditional 𝑁-gram models performed poorly because they are
unable to capture the important long-range dependencies and precise harmonic rules present
in music. Inspired by the strong performance of recurrent neural network language models, we
then investigated sequence models parameterized by recurrent neural networks and found that
a deep long short-term memory architecture performs particularly well.

1.3 Organization of the chapters 3

In chapter 5 on page 35, we open the black box and characterize the internals of our learned
model. Through measuring neuron activations to applied stimulus, we discover that the certain
neurons in the model have specialized to specific musical concepts without any form of super-
vision or prior knowledge. Our results here represent a significant milestone in computational
modelling of how musical knowledge is acquired.

We turn to the task of harmonization in chapter 6 on page 43 and present a method for
conditionally sampling our model in order to generate harmonizations.

To evaluate our success in achieving our stated research aim, chapter 7 on page 47 describes
the design, results, and conclusions from a large-scale musical Turing test we conducted. En-
couragingly, we find that average participants are only 5% more likely than random chance to
differentiate BachBot from real Bach. Furthermore, our analysis of participant demographics
and costs suggest that voluntary participation user studies promoted over social can yield high
quality data. This finding is especially significant to other fields requiring human evaluation,
such as machine translation, as it represents an alternative to the increasingly controversial
Amazon MTurk[34] for human evaluation.

Finally, we summarize the conclusions from our work and suggest future directions for
extension in chapter 8 on page 57.

2
Background

The goal of this chapter is to provide only the necessary background in recurrent neural net-
works and generative probabilistic sequence modelling required for understanding our models,
experiments, and results. It also introduces some common definitions and clarifies notation
used throughout later chapters.

A basic understanding of Western music theory and neural networks is assumed. Readers
unfamiliar with concepts such as piano rolls, Roman numeral analysis, and cadences, should
review chapter A on page 69 for a quick primer and Piston [90] and Denny [30] for more thor-
ough coverage. Likewise, those whom wish to review concepts such as activation functions,
neurons, and applying recurrent neural networks over arbitrary length sequences are advised
to review chapter B on page 77 and consult Bengio [9] for further reference.

2.1 Recurrent neural networks
Our use of the term recurrent neural network (RNN) refers in particular to linear Elman-type
RNNs [40] whose dynamics are described by eq. (2.1) on the following page (review chapter B
if this is unfamiliar).

6 Background

2.1.1 Notation
We begin by clarifying common notation and conventions used to describe RNNs. Unless
otherwise specified, future use of notation should be interpreted as defined in this section.

We use the subscript 𝑡 ∈ {1, 2, ⋯ , 𝑇 } to denote the time indexwithin a sequence of length
𝑇 ∈ ℕ

A sequence of inputs is denoted by 𝑥 and the sequence elements at timestep 𝑡 is denoted by
𝑥𝑡 ∈ ℝ𝑁𝑖𝑛 and assumed to have dimensionality 𝑁𝑖𝑛 ∈ ℕ. Similarly, ℎ𝑡 ∈ ℝ𝑁ℎ𝑖𝑑 and 𝑦𝑡 ∈ ℝ𝑁𝑜𝑢𝑡

denote elements from the hidden state and output sequences respectively.
To describe model parameters, we use𝑊 to indicate a real-valued weight matrix consist-

ing of all the connection weights between two sets of neurons and 𝜎(⋅) to indicate an element-
wise activation function. The collection of all model parameters is denoted by 𝜃.

When further clarity is required, we use subscripts 𝑊 𝑠𝑡 denote the connection weights
from a set of neurons 𝑠 to another set of neurons 𝑡 (i.e. in section 2.1.5 on page 10, 𝑊 𝑥𝑓 and
𝑊 𝑥ℎ refer to the connections from the inputs to the forget gate and hidden state respectively).
Subscripts on activation functions 𝜎𝑠,𝑡(⋅) are to be interpreted analogously.

Equipped with the above notation, the equations for RNN time dynamics can be expressed
as

ℎ𝑡 = 𝑊 𝑥ℎ𝜎𝑥ℎ (𝑥𝑡) + 𝑊 ℎℎ𝜎ℎℎ (ℎ𝑡−1)
𝑦𝑡 = 𝑊 ℎ𝑦𝜎ℎ𝑦 (ℎ𝑡)}

RNN time dynamics (2.1)

When discussing multi-layer networks, we use 𝐿 ∈ ℕ to denote total number of layers and
parenthesized superscripts (𝑙) for 𝑙 ∈ {1, 2, ⋯ , 𝐿} to indicate the layer. For example, 𝑧(2)

𝑡 is
the hidden states of the second layer and 𝑁 (3)

𝑖𝑛 is the dimensionality of the third layer’s inputs
𝑥(3)

𝑡 . Unless stated otherwise, multi-layer networks will assume that the outputs of the 𝑙 − 1st
layer are used as the inputs of the 𝑙th layer (i.e. ∀𝑡 ∶ 𝑥(𝑙)

𝑡 = 𝑦(𝑙−1)
𝑡).

2.1.2 The memory cell abstraction
While a large number of proposed RNN variants exist [40, 67, 61, 18, 71, 79], most share the
same underlying structure and differ only in their implementation details of eq. (2.1). Encap-
sulating these differences within an abstraction enables general discussion about RNN archi-
tecture without making a specific choice on implementation.

To do so, we introduce thememory cell abstraction to encapsulate the details of computing
𝑦𝑡 and ℎ𝑡 from 𝑥𝑡 and ℎ𝑡−1. This is illustrated visually in fig. 2.1, which shows a standard
Elman-type RNN [40] with the memory cell indicated by a dashed box isolating the recurrent
hidden state. The edges entering the memory cell (𝑥𝑡, ℎ𝑡−1) are the memory cell inputs and

2.1 Recurrent neural networks 7

Memory Cell
Input 𝑥𝑡

Hidden state ℎ𝑡

Output 𝑦𝑡

𝑧−1

Previous hidden state ℎ𝑡−1

Fig. 2.1 An Elman-type RNN with a single hidden layer. The recurrent hidden state is illus-
trated as unit-delayed (denoted by 𝑧−1) feedback edges from the hidden states to the input layer.
The memory cell encapsulating the hidden state is also shown.

the outgoing edges (𝑦𝑡, ℎ𝑡) are thememory cell outputs. In essence, the memory cell abstracts
away differences across RNN variants in their implementation of eq. (2.1).

2.1.3 Operations on RNNs: stacking and unrolling
Stacking memory cells to form deep RNNs

Just like deep neural networks, RNNs can be stacked to form deep RNNs [39, 95] by treating
the outputs from the 𝑙 − 1st layer’s memory cells as inputs to the 𝑙th layer (see fig. 2.2).

Prior work has observed that “deep RNNs outperformed the conventional, shallow RNN”
Pascanu et al. [87], affirming the importance of stacking multiple layers in RNNs. The im-
proved modelling can be attributed to two primary factors: composition of multiple non-linear
activation functions and an increase in the number of paths for backpropagated error signals to
flow. The former reason is analogous to the case in deep belief networks, which is well docu-
mented [9]. To understand the latter, notice that in fig. 2.2 there is only a single path from 𝑥𝑡−1
to 𝑦𝑡 hence the conditional independence 𝑦𝑡 ⟂⟂ 𝑥𝑡−1|ℎ(1)

𝑡 is satisfied. However, in fig. 2.2 there
are multiple paths from 𝑥𝑡−1 to 𝑦𝑡 (e.g. passing through either ℎ(2)

𝑡−1 → ℎ(2)
𝑡 or ℎ(1)

𝑡−1 → ℎ(1)
𝑡)

through which information may flow.

Unrolling RNNs into directed acyclic graphs

Given an input sequence {𝑥}𝑇
𝑡=1, an RNN can be unrolled into a directed acyclic graph (DAG)

comprised of 𝑇 copies of the memory cell connected forwards in time. This is illustrated for a

8 Background

ℎ(1)
𝑡−1

time
⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

Unroll

ℎ(2)
𝑡−1

𝑧−1

𝑧−1

𝑥𝑡+1

ℎ(1)
𝑡+1

ℎ(2)
𝑡+1

𝑦𝑡+1

𝑥𝑡

ℎ(1)
𝑡

ℎ(2)
𝑡

𝑦𝑡

𝑥𝑡−1

ℎ(1)
𝑡−1

ℎ(2)
𝑡−1

𝑦𝑡−1

𝑥𝑡

ℎ(1)
𝑡

ℎ(2)
𝑡

𝑦𝑡

Fig. 2.2 Block diagram representation of a -layer RNN (left) and its corresponding DAG (right)
after unrolling. The blocks labelled with ℎ𝑡 represent memory cells whose parameters are
shared across all times 𝑡.

stacked 2-layer RNN in fig. 2.2, where the vectors 𝑦𝑡, ℎ𝑡, and 𝑥𝑡 are depicted as blocks and the
ℎ𝑡 is understood to represent a memory cell.

Figure 2.2 shows that the hidden state ℎ𝑡 is passed forwards throughout the sequence of
computations. This gives rise to an alternative interpretation of the hidden state as a temporal
memory mechanism. Under this interpretation, updating the hidden state ℎ𝑡 can be viewed as
writing information from the current inputs 𝑥𝑡 to memory and producing the outputs 𝑦𝑡 can be
interpreted as reading information from memory.

2.1.4 Training RNNs and backpropagation through time
The parameters 𝜃 of a RNN are typically learned from data by minimizing some cost ℰ =
∑1≤𝑡≤𝑇 ℰ𝑡(𝑥𝑡) measuring the performance of the network on some task. This optimization is
usually performed using iterative methods which require computation of gradients 𝜕ℰ

𝜕𝜃 at each
iteration.

In feed-forward networks, computation of gradients can be performed efficiently using
backpropagation [16, 74, 93]. While time-delayed recurrent hidden state connections appear
to complicate matters initially, unrolling the RNN removes the time-delayed recurrent edges

2.1 Recurrent neural networks 9

time
⋯ ⋯

⋯

⋯

⋯

⋯

ℰ𝑡−1 ℰ𝑡 ℰ𝑡+1

𝑥𝑡+1𝑥𝑡𝑥𝑡−1

ℎ𝑡+1ℎ𝑡ℎ𝑡−1

𝑦𝑡+1𝑦𝑡𝑦𝑡−1

𝜕ℰ𝑡+1
𝜕𝑦𝑡+1

𝜕ℰ𝑡
𝜕𝑦𝑡

𝜕ℰ𝑡−1
𝜕𝑦𝑡−1

𝜕𝑦𝑡+1
𝜕ℎ𝑡+1

𝜕𝑦𝑡
𝜕ℎ𝑡

𝜕𝑦𝑡−1
𝜕ℎ𝑡−1

𝜕ℎ𝑡+1
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕ℎ𝑡−1

𝜕ℎ𝑡−1
𝜕ℎ𝑡−2

Fig. 2.3 The gradients accumulated along network edges in BPTT.

and converts the RNN into a DAG (e.g. fig. 2.2 on page 8) which can be interpreted as a 𝑇
layered feed-forward neural network with parameters shared across all 𝑇 layers.

This view of unrolled RNNs as feedforward networksmotivates backpropagation through
time (BPTT) [50], a method for training RNNs which applies backpropagation to the unrolled
DAG.

Figure 2.3 shows how BPTT, just like regular backpropagation, divides the computation
of a global gradient 𝜕ℰ

𝜕𝜃 into a series of local gradient computations, each of which involves
significantly less variables and is hence cheaper to compute. However, whereas the depth of
feedforward networks is fixed, the unrolled RNN’s depth is equal to the input sequence length
𝑇 and may introduce problems when 𝑇 is very large.

Vanishing/exploding gradients

It is well known that naive implementations of memory cells often suffer from two problems
also affecting very deep feedforward networks: the vanishing gradient and exploding gradi-
ent [11].

10 Background

To illustrate the problem, express the computation represented by fig. 2.3 mathematically
by applying the chain rule to the RNN dynamics equation (eq. (2.1) on page 6):

𝜕ℰ
𝜕𝜃 = ∑

1≤𝑡≤𝑇

𝜕ℰ𝑡
𝜕𝜃 (2.2)

𝜕ℰ𝑡
𝜕𝜃 = ∑

1≤𝑘≤𝑡 (
𝜕ℰ𝑡
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕𝜃) (2.3)

𝜕ℎ𝑡
𝜕ℎ𝑘

= ∏
𝑡≥𝑖>𝑘

𝜕ℎ𝑖
𝜕ℎ𝑖−1

= ∏
𝑡≥𝑖>𝑘

𝑊 ⊺
ℎℎ diag (𝜎′

ℎℎ(ℎ𝑖−1)) (2.4)

Equation (2.3) expresses how the error ℰ𝑡 at time 𝑡 is a sum of temporal contributions
𝜕ℰ𝑡
𝜕𝑦𝑡

𝜕𝑦𝑡
𝜕ℎ𝑡

𝜕ℎ𝑡
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕𝜃 measuring how 𝜃’s impact on ℎ𝑘 affects the cost ℰ𝑡 at some future time 𝑡 > 𝑘.

The quantity 𝜕ℎ𝑡
𝜕ℎ𝑘

in eq. (2.4) measures the affect of the hidden state ℎ𝑘 on some future state ℎ𝑡
where 𝑡 > 𝑘 and can be interpreted as transferring the error “in time” from step 𝑡 back to step
𝑘 [86].

Both vanishing and exploding gradients are due to the product in eq. (2.4) exponentially
growing or shrinking over long time-spans (i.e. 𝑡 ≫ 𝑘), preventing error signals to be trans-
ferred across long time-spans and learning of long-term dependencies. In section C.1 on
page 81 we prove that a sufficient condition for vanishing gradients is:

‖𝑊 ℎℎ‖ < 1
𝛾𝜎

(2.5)

where ‖⋅‖ is the matrix operator norm (see eq. (C.1) on page 81),𝑊 ℎℎ is as defined in eq. (2.1)
on page 6, and 𝛾𝜎 is a constant depending on the choice of activation function (e.g. 𝛾𝜎 = 1 for
𝜎ℎℎ = tanh, 𝛾𝜎 = 0.25 for 𝜎ℎℎ = sigmoid).

This difficulty learning relationships between events spaced far apart in time presents a
significant challenge for music applications. As noted by Cooper and Meyer [22]:

Long-term dependencies are at the heart of what defines a style of music, with
events spanning several notes or bars contributing to the formation of metrical and
phrasal structure.

2.1.5 Long short term memory: solving the vanishing gradient
In order to build a model which learns long range dependencies, vanishing gradients must
be avoided. A popular memory cell architecture which does so is long short term memory
(LSTM). Proposed by Hochreiter and Schmidhuber [61], LSTM solves the vanishing gradient

2.1 Recurrent neural networks 11

problem by enforcing constant error flow on eq. (2.4), that is

∀𝑡, ∀ℎ𝑡 ∶ 𝑊 ⊺
ℎℎ𝜎′

ℎℎ(ℎ𝑡) = 𝐼 (2.6)

where 𝐼 is the identity matrix.
As a consequence of constant error flow, eq. (2.4) on page 10 becomes

𝜕ℎ𝑡
𝜕ℎ𝑘

= ∏
𝑡≥𝑖>𝑘

𝑊 ⊺
ℎℎ diag (𝜎′

ℎℎ(ℎ𝑖−1)) = ∏
𝑡≥𝑖>𝑘

𝐼 = 𝐼 (2.7)

The dependence on the time-interval 𝑡 − 𝑘 is no longer present, ameliorating the exponential
decay causing vanishing gradients and enabling long-range dependencies (i.e. 𝑡 ≫ 𝑘) to be
learned.

Integrating eq. (2.6) with respect to ℎ𝑡 yields 𝑊 ℎℎ𝜎ℎℎ(ℎ𝑡) = ℎ𝑡. Since this must hold for
any hidden state ℎ𝑡, this means that:

1. 𝑊 ℎℎ must be full rank

2. 𝜎ℎℎ must be linear

3. 𝑊 ℎℎ𝜎ℎℎ = 𝐼

In the constant error carousel (CEC), this is ensured by setting 𝜎ℎℎ = 𝑊 ℎℎ = 𝐼 . This
may be interpreted as removing time dynamics on ℎ in order to permit error signals to be
transferred backwards in time (eq. (2.4)) without modification (i.e. ∀𝑡 ≥ 𝑘 ∶ 𝜕ℎ𝑡

𝜕ℎ𝑘
= 𝐼).

In addition to using a CEC, a LSTM introduces three gates controlling access to the CEC:

Input gate : scales input 𝑥𝑡 elementwise by 𝑖𝑡 ∈ [0, 1], writes to ℎ𝑡

Output gate : scales output 𝑦𝑡 elementwise by 𝑜𝑡 ∈ [0, 1], reads from ℎ𝑡

Forget gate : scales previous cell value ℎ𝑡−1 by 𝑓 𝑡 ∈ [0, 1], resets ℎ𝑡

Mathematically, the LSTM model is defined by the following set of equations:

𝑖𝑡 = sigmoid(𝑊 𝑥𝑖𝑥𝑡 + 𝑊 𝑦𝑖𝑦𝑡−1 + 𝑏𝑖) (2.8)
𝑜𝑡 = sigmoid(𝑊 𝑥𝑜𝑥𝑡 + 𝑊 𝑦𝑜𝑦𝑡−1 + 𝑏𝑜) (2.9)
𝑓 𝑡 = sigmoid(𝑊 𝑥𝑓𝑥𝑡 + 𝑊 𝑦𝑓𝑦𝑡−1 + 𝑏𝑓) (2.10)
ℎ𝑡 = 𝑓 𝑡 ⊙ ℎ𝑡−1 + 𝑖𝑡 ⊙ tanh(𝑊 𝑥ℎ𝑥𝑡 + 𝑦𝑡−1𝑊 𝑦ℎ + 𝑏ℎ) (2.11)
𝑦𝑡 = 𝑜𝑡 ⊙ tanh(ℎ𝑡) (2.12)

12 Background

𝑦𝑡

𝑖𝑡 𝑓 𝑡 𝑜𝑡

𝑥𝑡 ℎ𝑡−1 𝑥𝑡 ℎ𝑡−1 𝑥𝑡 ℎ𝑡−1

ℎ𝑡−1

𝑧−1

ℎ𝑡
𝑥𝑡

ℎ𝑡−1

LSTM Memory Cell
CEC

Fig. 2.4 Schematic for a single LSTMmemory cell. Notice how the gates 𝑖𝑡, 𝑜𝑡, and 𝑓 𝑡 control
access to the constant error carousel (CEC).

where ⊙ denotes elementwise multiplication of vectors.
Notice that the gates (𝑖𝑡, 𝑜𝑡, and 𝑓 𝑡) controlling flow in and out of the CEC are time depen-

dent. This permits interpreting the gates as a mechanism enabling LSTM to learn which error
signals to trap in the CEC and when to release them [61], allowing error signals to potentially
be transported across long time lags.

Some authors define LSTM such that ℎ𝑡 is not used to compute gate activations, referring
to fig. 2.4 as LSTMwith “peephole connections” [47]. We will use LSTM to refer to the model
as described above.

Practicalities for successful applications of LSTM

Many successful applications of LSTM [32, 113, 87] employ some common practical tech-
niques. Perhaps most important is gradient norm clipping [78, 86] where the gradient is
scaled or clipped whenever it exceeds a threshold. This is necessary because while vanishing
gradients are mitigated by CECs, LSTM do not explicitly protect against exploding gradients.

Another common practice is the use of methods for reducing overfitting and improving
generalization. In particular, dropout [60] is commonly applied between stacked memory cell
layers to regularize the learned features and prevent co-adaptation [114]. Additionally, batch
normalization [65] of memory cell hidden states is also commonly done to reduce co-variate
shifts, accelerate training, and improve generalization.

Finally, applications of RNNs to long sequences can incur a prohibitively high cost for a
single parameter update [101]. For instance, computing the gradient of an RNN on a sequence
of length 1000 costs the equivalent of a forward and backward pass on a 1000 layer feed-

2.1 Recurrent neural networks 13

forward network. This issue is typically addressed by only back-propagating error signals a
fixed number of timesteps back in the unrolled network, a technique known as truncatedBPTT
[111]. As the hidden states in the unrolled network have already been exposed tomany previous
timesteps, learning of long range structure is still possible with truncated BPTT.

3
Related Work

3.1 Prior work in automatic composition
In a review by Toiviainen [106], automatic compositionmethods are broadly classified as either
symbolic (e.g. rule-based expert systems) or connectionist (e.g. neural networks). While our
research falls strongly within the connectionist category, we provide reviewmethods from both
categories.

3.1.1 Symbolic rule-based methods
Symbolic methods have been prevalent since the 1960s [104] and are appealing because of
their high degree of interpretability. As described by Todd [105], symbolic methods “enable
composers to write down the composition rules employed in their own creative process and
then use a computer to execute these instructions, enabling assessment of whether the results
of the rules held artistic merit.”

At the heart of many rule-based systems is a collection of rules which are (recursively) ap-
plied to ultimately yield musical notes. While the earliest rule-based systems required manual
specification of rules [35, 27], later works utilized techniques such as association rule mining

16 Related Work

[97], grammatical inference [27, 91], or constraint logic programming [107] to automatically
derive new rules or learn them from data.

Experiments in Music Intelligence (EMI) by Cope [24, 23] is one of the first rule-based
composition systems which achieved automatic stylistic composition. Using a hand-crafted
grammar and an augmented transition network parser [109], the system was capable of pro-
ducing music to a particular genre or author, suggesting that the rules extracted by the system
can capture a sense of musical style. The more recent Emmy and Emily Howell projects [25,
26] extend EMI by using it as a database of compositions to recombine and build novel com-
positions from.

While symbolic methods permit straightforward incorporation of domain-specific knowl-
edge and a offer high degree of interpretability, they are inherently biased by their creators’ sub-
jective theories on harmony and music cognition. Furthermore, specification of hand-crafted
rules requires music expertise and the rules may not generalize across different tasks. Addi-
tionally, rule-based methods are brittle to even small amounts of distortion and noise, making
them unsuitable for noisy applications. Furthermore, symbolic methods limit creativity by
disallowing any form of deviation from the defined rules.

3.1.2 Early connectionist methods
Connectionism, also known as parallel distributed processing, refers to systems built from
several simple processing units connected in a network and acting in cooperation [55]. Unlike
rule based systems, the connectionist paradigm replaces strict rule-following behaviour with
regularity-learning and generalization [33].

The earliest connectionist music models utilized note-level Jordan RNNs [67] for melody
generation and harmonization tasks [104, 105, 12]. While they achieved “varying degrees of
success” [54], their creators did not conduct any rigorous evaluations.

The next generation of models utilized prior knowledge of music theory to inform their
designs. Mozer’s CONCERT [81] system is a BPTT-trained RNN which models music at two
levels of resolution (notes and chords) and utilizes domain-specific representations for notes
[96] and chords [73]. Similarly, HARMONET [58] also applies domain-specific knowledge
to break down the prediction pipeline into first predicting the Roman numeral skeleton of a
piece followed by chord expansion and ornamentation. MELONET [41, 63] builds on top of
HARMONET an additional motif classification sub-network.

A major criticism of these early models is their highly specialized domain-specific archi-
tectures. Despite the connectionist philosophy of learning from data rather than imposing prior
constraints, the models developed are highly influenced by prior assumptions about the struc-
ture of music and incorporate significant amounts of domain-specific knowledge. Additionally,

3.1 Prior work in automatic composition 17

these models had difficulties learning the long-term dependencies required for plausible phras-
ing structure and motifs. Mozer describes CONCERT as being able to reproduce scales but
“while the local contours made sense, the pieces were not musically coherent, lacking thematic
structure and having minimal phrase structure and rhythmic organisation“ (Mozer [81]). This
problem of learning long-term dependencies can likely be attributed to the memory cells used
by earlier models, which did not protect against vanishing gradients.

3.1.3 Modern connectionist models
The invention of LSTM in 1997 by Hochreiter and Schmidhuber [61] brought on a new genera-
tion of connectionist models which utilized more sophisticated memory cell implementations.
Experiments demonstrated that LSTM possessed many properties desirable for music applica-
tions, such as superior performance learning grammatical structure [46], capability to measure
time intervals between events [47], and ability to learn to produce self-sustaining oscillations
at a regular frequency Gers, Schraudolph, and Schmidhuber [48]. Franklin [44] evaluated mul-
tiple memory cells on variety of music tasks and concludes: “while we have found a task that
challenges a single LSTM network, we do not believe that any other recurrent networks we
have used would be able to learn these songs.”’

One of the first applications of LSTM to music was by Eck and Schmidhuber [38] and Eck
and Schmidhuber [36], which used an LSTM to model blues chord progressions and another
LSTM to model melody lines given chords. The authors reported that LSTM can learn long
term music structure such as repeated motifs without explicit modelling, an improvement over
earlier systems such as HARMONET by Feulner and Hörnel [41] where motifs were explicitly
modelled. However, Eck and Schmidhuber [38] used a severely constrained music represen-
tation which quantized to eight notes, neglected the octave numbers for pitch classes, limited
the model to 12 possible chords, and had “no explicit way to determine when a note ends” Eck
and Schmidhuber [38].

The current state of the art in polyphonic modelling is split between the RNN-RBM [13]
and RNN-DBN [49] depending on the dataset used for evaluation. However, both models
requires an expensive contrastive divergence sampling step at each timestep during training.
Furthermore, both use a dataset of Bach chorales which are quantized music to quavers, disal-
lowing shorter-duration notes such as semiquavers and demisemiquavers.

18 Related Work

3.2 Automatic stylistic composition
While symbolic methods for automatic stylistic composition had been previously researched
[27, 19], the rising popularity of connectionist methods coincided with a surge of models for
automatically composing music ranging from baroque [63] to blues [36] to folk music [100].
This correlation is unsurprising: as connectionist models are trained to capture regularities in
their training data, they are ideally suited for automatically composing music of a particular
style.

3.2.1 Applications to Bach chorales
The Bach chorales have been a popular dataset for automatic composition research. Early sys-
tems primarily focused on chorale harmonization tasks and include rule-based systems lever-
aging hand-crafted rules [35] as well as models learned from data like the effective Boltzmann
machine model [7]. Hybrids which learn rules for Bach from data have also been proposed
[97].

An important work in automatic stylistic composition of Bach chorales is Allan andWilliams
[2], which applied harmonization HMM to generate harmonizations and a separate ornamenta-
tion HMM to fill in semiquavers. Their work is one of the first to quantitatively evaluate model
performance using validation set cross-entropy and they introduce a dataset of Bach chorales
(commonly referred to as JSB Chorales by other work). However, their harmonization HMM
leverages a domain-specific harmonic encoding of chords for hidden states. Additionally, the
dataset they introduced is quantized to quavers and hence affects all other models utilizing JSB
Chorales.

The JSB Chorales introduced by Allan and Williams [2] has since become a standard eval-
uation benchmark routinely used [13, 87, 6, 49, 113] to evaluate the performance of sequence
models on polyphonic music modelling. The current state-of-the-art on this dataset, as mea-
sured by cross-entropy loss on held-out validation data, is achieved by the RNN-DBN [49].

While the introduction of the standardized JSB Chorales dataset has helped improve per-
formance evaluation, it does not solve the problem of measuring the success of an automatic
stylistic composition. This is because the goal of an automatic stylistic composition system is
to generate music which human evaluators find similar to a particular style, not to maximize
cross entropy on unseen test data.

3.2 Automatic stylistic composition 19

3.2.2 Evaluation of automatic composition systems
This difficulty in evaluating automatic composition systems was first addressed by Pearce and
Wiggins [89]. Lack of rigorous evaluation affects many of the earlier automatic composition
systems and complicates performance comparisons. Even with standard corpuses such as JSB
Chorales, cross-entropy is still a proxy to the true measure of success for an automatic stylistic
composition system.

In order to obtain a more direct measure of success, researchers have turned to subjective
evaluation by human listeners. Kulitta [91] is a recent rule-based system whose performance
was evaluated by 237 human participants from Amazon MTurk. However, their participant
pool consists entirely of US citizens (a fault of MTurk in general) and the data obtained from
MTurk is of questionable quality [34]. Moreover, their results only indicated that participants
believed Kulitta to be closer to Bach than to a random walk. The use of a large pool of human
evaluators represents a step in the right direction. However, a more diverse participant pool
coupled with stronger results would significantly improve the strength of this work.

Perhapsmost relevant to ourwork isRacchmaninof (RAndomConstrainedCHain ofMArko-
vian Nodes with INheritance Of Form) by Collins et al. [20], an expert system designed for
stylistic automatic composition. The authors evaluate their system on 25 participants with a
mean of 8.56 years of formal music training and impressively find that only 20% of partici-
pants performed significantly better than chance. While we believe this to be one of the most
convincing studies on automatic stylistic composition to date, a few criticisms remain. First,
the proposed model is highly specialized to automatic stylistic composition and is more of a
testament to the author’s ability to encode the stylistic rules of Bach than to the model’s ability
to learn from data. Additionally, a larger and more diverse participant group including evalu-
ators of varying skill level would provide stronger evidence of the model’s ability to produce
“Bach-like” music to average human listeners.

Supposing, for instance, that the fundamental rela-
tions of pitched sound in the signs of harmony and
of musical composition were susceptible of such ex-
pression and adaptations, the engine might compose
elaborate and scientific pieces of music of any degree
of complexity or extent

Ada Lovelace [14]

4
Automatic stylistic composition with deep

LSTM

This chapter describes the design and quantitative evaluation of a generative RNN sequence
model for polyphonic music. In contrast to many prior systems for automatic composition, we
intentionally avoid allowing our prior assumptions about music theory and structure impact the
design of our model, opting to learn features from data over injecting prior knowledge. This
choice is motivated by three considerations:

1. Prior assumptions about music may be incorrect, limiting the performance achievable
by the model

2. The goal is to assess themodel’s ability to compose convincingmusic, not the researcher’s
prior knowledge

3. The structure learned by an assumption-free model may provide novel insights into var-
ious musical phenomena

Note that this is deviates from many prior works, which leveraged domain-specific knowledge
such as modelling chords and notes hierarchically [58, 81, 38], accounting for meter [37], and
detecting for motifs [41].

22 Automatic stylistic composition with deep LSTM

We first construct a training corpus from Bach chorales and investigate the impact of our
preprocessing procedure on the corpus. Next, we present a simple frame-based sequence en-
coding for polyphonic music with many desirable properties. Using this sequence representa-
tion, we reduce the task to one of language modelling and first show that traditional 𝑁-gram
language models perform poorly on our encoded music data. This prompts an investigation of
various RNN architectures, design trade-offs, and training methods in order to build an opti-
mized generative model for Bach chorales. We conclude this chapter by quantitatively evalu-
ating our final model in test-set loss and training time, and comparing against similar work to
establish context.

4.1 Constructing a corpus of encoded Bach chorales scores
We restrict the scope of our investigation to Bach chorales for the following reasons:

1. The Baroque style employed in Bach chorales has specific guidelines and practices [90]
(e.g. no parallel fifths, voice leading) which can be use to qualitatively evaluate success

2. The large amount of easily recognizable structure: all chorales have exactly four parts
consisting of amelody in the Soprano part harmonized by theAlto, Tenor, andBass parts.
Additionally, each chorale consists of a series of phrases: “groupings of consecutive
notes into a unit that has complete musical sense of its own”’[83] which Bach delimited
using fermatas

3. The Bach chorales have become a standardized corpus routinely studied by music theo-
rists[110]

While the JCB Chorales [2] has become a popular dataset for polyphonic music modelling,
we will show in 4.1.1 that its quantization to quavers introduces a non-negligible amount of
distortion.

Instead, we opt build a corpus of Bach chorales which is quantized to semiquavers rather
than quavers, enabling our model to operate at a time resolution at least 2× better than all
related work.

Our data is obtained from the Bach-Werke-Verzeichnis (BWV) [17] indexed collection of
the Bach chorales provided by the music21[28] Python library.

4.1.1 Preprocessing
Motivated by music’s transposition invariance (see section A.2.4 on page 76) as well as prior
practice [81, 38, 43, 42], we first perform key normalization. The keys of each score were

4.1 Constructing a corpus of encoded Bach chorales scores 23

Fig. 4.1 First 4 bars of JCB Chorale BWV 185.6 before (top) and after (bottom) preprocessing.
Note the transposition down by a semitone to C-major as well as quantization of the demisemi-
quavers in the third bar of the Soprano part.

first analyzed using the Krumhansl Schmuckler key-finding algorithm [72] and then transposed
such that the resulting score is C-major for major scores and A-minor for minor scores.

Next, time quantization is performed by aligning note start and end times to the near-
est multiple of some fundamental duration. Our model uses a fundamental duration of one
semibreve, exceeding the time resolutions of [13, 38] by 2x, [58] by 4x, and [7] by 8x.

We consider only note pitches and durations, neglecting changes in timing (e.g. ritardan-
dos), dynamics (e.g. crescendos), and additional notation (e.g. accents, staccatos, legatos).
This is comparable to prior work [13, 87] where a MIDI-encoding also lacking this additional
notation was used.

An example of the effects introduced by our preprocessing is provided in fig. 4.1 in sheet
music notation and in piano roll notation on fig. 4.2 on the following page.

24 Automatic stylistic composition with deep LSTM

0 1 2 3

Measure number

G2

D3E♭3
F3F♯3G3
A3B♭3
C4
D4E♭4
F4
G4
A4B♭4
C5
D5E♭5
F5

Pi
tch

Piano roll for BWV185.6 (original)

0 1 2 3

Measure number

A2

E3F3
G3G♯3A3
B3C4
D4
E4F4
G4
A4
B4C5
D5
E5F5
G5

Pi
tch

Piano roll for BWV185.6 (preprocessed)

Fig. 4.2 Piano roll representation of the same 4 bars from fig. 4.1 before and after preprocessing.
Again, note the transposition to C-major and time-quantization occurring in the Soprano part.

Quantizing to semiquavers introduces non-negligible distortion

Choosing to implement our own sequential encoding scheme was a difficult choice. While it
would permit a finer time-resolution of semiquavers, it would make our cross-entropy losses
incomparable to those reported on JCB Chorales [2].

To justify our decision, we investigated the distortion introduced by quantization to quavers
rather than semiquavers in fig. 4.3 on the next page. We find that JCB Chorales distorts 2816
notes in the corpus (2.85%) because of quantization to quavers. Since our research aim is
to generate convincing music, we minimize unnecessary distortions and proceed with our
own encoding scheme. We understand that this choice will create difficulties in evaluating our
model’s success, and address this concern through alternative means (chapter 7) of evaluation
which are arguably more relevant for automatic stylistic composition systems.

We also investigate changes in other corpus-level statistics as a result of key normalization
and time quantization, such as pitch and pitch class usages and meter. All results fall within
expectations, but the interested reader is directed to section C.2 on page 82.

4.1 Constructing a corpus of encoded Bach chorales scores 25

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Note durations (crotchets)

0
10000
20000
30000
40000
50000
60000

Co
un

t

Note durations (original)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Note durations (crotchets)

0
10000
20000
30000
40000
50000
60000

Co
un

t

Note durations (quantized)

Fig. 4.3 Distortion introduced by quantization to semiquavers

4.1.2 Sequential encoding of musical data
After preprocessing of the scores, our next step is to encode music into a sequence of tokens
amenable for processing by RNNs.

Token-level versus frame-level encoding

One design decision is whether the tokens in the sequence are comprised of individual notes
(as done in [81, 43, 99]) or larger harmonic units (e.g. chords [38, 13], “harmonic context”
[2]). This tradeoff is similar to one faced in RNN language modelling where either individual
characters or entire words can be used.

In contrast to most language models which operate at the word level, we choose to construct
our models at the note level. The use of a note-level encoding may improve performance
with respect to out-of-vocabulary (OOV) tokens in two ways. It first reduces the potential
vocabulary size from 𝑂(1284) possible chords down to 𝑂(128) potential notes. In addition,
harmonic relationships learned by the model parameters may enable generalization to OOV
queries (e.g. OOV chords that are transpositions of in-vocabulary chords).

In fact, the decision may not even matter at all. Graves [52] showed comparable perfor-
mance between LSTM language models that operate on individual characters versus words
(perplexities of 1.24 bits vs 1.23 bits per character respectively), suggesting that choice of
notes versus chords is not very significant, at least for English language modelling.

Definition of the encoding scheme

Similar to [105], our encoding represents polyphonic scores using a localist frame-based rep-
resentation where time is discretized into constant timestep frames. Frame based processing
forces the network to learn the relative duration of notes, a counting and timing task which
[48] demonstrated LSTM is capable of. Consecutive frames are separated by a unique delim-

26 Automatic stylistic composition with deep LSTM

Table 4.1 Statistics on the preprocessed datasets used throughout our study

.
Vocabulary size Total # tokens Training size Validation size

108 423463 381117 42346

iter (“|||”’ in fig. 4.4 on the next page). Each frame consists of a sequence of ⟨Note,Tie⟩ tuples
where Note ∈ {0, 1, ⋯ , 127} represents the MIDI pitch of a note and Tie ∈ {𝑇 𝑟𝑢𝑒, 𝐹 𝑎𝑙𝑠𝑒}
distinguishes whether a note is tied with a note at the same pitch from the previous frame or is
articulated at the current timestep.

For each score, a unique start symbol (“START” in fig. 4.4) and end symbol (“END” in
fig. 4.4) are appended to the beginning and end respectively. This causes the model to learn
to initialize itself when given the start symbol and allows us to determine when a composition
generated by the model has concluded.

Ordering of parts within a frame

A design decision is the order in which notes within a frame are encoded and consequentially
processed by a sequential model. Since chorale music places the melody in the Soprano part, it
is reasonable to expect the Soprano notes to be most significant in determining the other parts.
Hence, we would like to process Soprano notes first and order the notes within a frame in
descending pitch.

Modelling fermatas produces more realistic phrasing

The above specification describes our initial attempt at an encoding format. However, we found
that this encoding format resulted in unrealistically long phrase lengths. Including fermatas
(represented by “(.)” in fig. 4.4 on the facing page), which Bach used to denote ends of phrases,
helped alleviate problems with unrealistically long phrase lengths.

Encoded corpus statistics

The vocabulary and corpus size after encoding is detailed in table 4.1. The rank-size distribu-
tion of the note-level corpus tokens is shown in fig. 4.5 and confirms the failure of Zipf’s law
in our data. This shows that our data’s distribution differs from those typical for language cor-
puses, suggesting that the 𝑁-gram language models benchmarked in section 4.2.2 on page 29
may not perform well.

4.1 Constructing a corpus of encoded Bach chorales scores 27

START
(59, True)
(56, True)
(52, True)
(47, True)
|||
(59, True)
(56, True)
(52, True)
(47, True)
|||
(.)
(57, False)
(52, False)
(48, False)
(45, False)
|||
(.)
(57, True)
(52, True)
(48, True)
(45, True)
|||
END

Fig. 4.4 Example encoding of a score containing two chords, both one quaver in duration and
the second one possessing a fermata. Chords are encoded as (MIDI pitch value, tied to previous
frame?) tuples, “|||”’ encodes the ends of frames, and “(.)” at the start of a chord encodes a
fermata. Each “|||” corresponds to time advancing by a semiquaver

28 Automatic stylistic composition with deep LSTM

0 20 40 60 80 100 120 140 160

Rank

0

1000

2000

3000

4000

5000

6000

7000

8000
Co

un
t

0 1 2 3 4 5

log Rank

0
1
2
3
4
5
6
7
8
9

lo
g
Co

un
t

Failure of Zipf’s law

Fig. 4.5 Left: Token frequencies sorted by rank. Right: log-log plot where a power law distri-
bution as predicted by Zipf’s law would appear linear.

Discussion on our encoding scheme

We make the following observations about our proposed encoding scheme:

• It is sparse: unarticulated notes are not encoded

• It is also variable length: each frame can span anywhere from one to five tokens, re-
quiring LSTM’s capability of detecting spacing between events[48]

• The explicit representation of tied notes vs articulated notes enables us to determine
when notes end, resolving an issue present in many prior works [38, 37, 75, 15]

Unlike many others [81, 43, 73], we avoid adding prior information through engineering
harmonically relevant features. Instead, we appeal to results by Bengio [9] and Bengio and
Delalleau [10] suggesting that that a key ingredient in deep learning’s success is its ability to
learn good features from raw data. Such features are very likely to be musically relevant,
which we will explore further in chapter 5.

4.2 Design and validation of a generative model for music
In this section, we describe the design and validation process leading to our generative model.

4.2.1 Training and evaluation criteria
Following [81], we will train the model to predict 𝑃 (𝑥𝑡+1|𝑥𝑡,ℎ𝑡−1): a probability distribution
over all possible next tokens 𝑥𝑡+1 given the current token 𝑥𝑡 and the previous hidden state ℎ𝑡−1.
This is the exact same operation performed by RNN language models [80]. We minimize

4.2 Design and validation of a generative model for music 29

cross-entropy loss between the predicted distributions 𝑃 (𝑥𝑡+1|𝑥𝑡,ℎ𝑡−1) and the actual target
distribution 𝛿𝑥𝑡+1

At the next timestep, the correct token 𝑥𝑡+1 is provided as the recurrent input even if the
most likely prediction argmax𝑃 (𝑥𝑡+1|ℎ𝑡,𝑥𝑡) differs. This is is referred to as teacher forcing
[112] performed to aid convergence because the model’s predictions may not be reliable early
in training.

However, at inference the token generated from 𝑃 (𝑥𝑡+1|ℎ𝑡,𝑥𝑡) is reused as the previous
input, creating a discrepancy between training and inference. Scheduled sampling [8] is a
recently proposed alternative training method for resolving this discrepancy and may help the
model better learn to predict using generated symbols rather than relying on ground truth to be
always provided as input.

4.2.2 Establishing a baseline with 𝑁-gram language models
The encoding of music scores into token sequences permits application of standard sequence
modelling techniques from language modelling, a research topic within speech recognition
concerned with modelling distributions over sequences of tokens (e.g. phones, words). This
motivates our use of two widely available language modelling software packages, KenLM
[57] and SRILM [98], as baselines. KenLM implements an efficient modified Kneser-Ney
smoothing language model and while SRILM provides a variety of language models we choose
choose to use the Good-Turing discounted language model for benchmarking against.

Both models were developed for applications modelling language data, whose distribution
over words which may differ from our encoded music data (see fig. 4.5 on page 28). Further-
more, both are based upon 𝑁-gram models which are constrained to only account for short-
term dependencies. Therefore, we expect RNNs to outperform the 𝑁-gram baselines shown
in table 4.2 on the next page.

4.2.3 Description of RNN model hyperparameters
The following experiments investigate deep RNN models parameterized by the following hy-
perparameters:

1. num_layers – the number of memory cell layers

2. rnn_size – the number of hidden units per memory cell (i.e. hidden state dimension)

3. wordvec – dimension of vector embeddings

4. seq_length – number of frames before truncating BPTT gradient

30 Automatic stylistic composition with deep LSTM

Table 4.2 Perplexities of baseline 𝑁-gram language models on encoded music data

Model Order KenLM (Modified Kneser-Ney) SRILM(Good-Turing)
Train Test Train Test

1 n/a n/a 34.84 34.807
2 9.376 8.245 9.420 9.334
3 6.086 5.717 6.183 6.451
4 3.865 4.091 4.089 4.676
5 2.581 3.170 2.966 3.732
6 1.594 2.196 2.002 2.738
7 1.439 2.032 1.933 2.617
8 1.387 2.014 1.965 2.647
9 1.350 2.006 1.989 2.673
10 1.323 2.001 1.569 2.591
11 1.299 1.997 1.594 2.619
12 1.284 2.000 1.633 2.664
13 1.258 1.992 1.653 2.691
14 1.241 1.991 1.682 2.730
15 1.226 1.991 1.714 2.767
16 1.214 1.994 1.749 2.807
17 1.205 1.995 1.794 2.853
18 1.196 1.993 1.845 2.901
19 1.190 1.996 1.892 2.947
20 1.184 1.997 1.940 2.990
21 1.177 1.996 1.982 3.027
22 1.173 1.997 2.031 3.067
23 1.165 1.997 2.069 3.101
24 1.159 1.998 2.111 3.135
25 1.155 2.000 2.156 3.170

4.2 Design and validation of a generative model for music 31

0 5 10 15 20 25 30
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ain

in
g
lo
ss

GRU
RNN
Clockwork
MRNN
LSTM

0 5 10 15 20 25 30
Epoch

5

6

7

8

9

10

11

Va
lid

ati
on

lo
ss

GRU
RNN
Clockwork
MRNN
LSTM

Training curves for various RNN architectures

Fig. 4.6 LSTM and GRUs yield the lowest training loss. Validation loss traces show all archi-
tectures exhibit signs of significant overfitting

5. dropout – the dropout probability

Our model first embeds the inputs 𝑥𝑡 into a wordvec-dimensional vector-space, compress-
ing the dimensionality down from |𝑉 | ≈ 140 to wordvec dimensions. Next, num_layers
layers of memory cells followed by batch normalization [65] and dropout [60] with dropout
probability dropout are stacked. The outputs 𝑦(num_layers)

𝑡 are followed by a fully-connected
layer mapping to |𝑉 | = 108 units, which are passed through a softmax to yield a predictive
distribution 𝑃 (𝑥𝑡+1|ℎ𝑡−1,𝑥𝑡). Cross entropy is used as the loss minimized during training.

Models were trained using Adam [70] with an initial learning rate of 2 × 10−3 decayed by
0.5 every 5 epochs. The back-propagation through time gradients were clipped at ±5.0 [86]
and BPTT was truncated after seq_length frames. A minibatch size of 50 was used.

4.2.4 Comparison of memory cells on music data
We used theanets1 to rapidly implement and compare a large number of memory cell im-
plementations. Figure 4.6 shows the results of exploring a range of RNN memory cell imple-
mentation and holding num_layers=1, rnn_size=130, wordvec=64, and seq_length=50
constant. Unlike later models, none of these models utilized dropout or batch normalization.
We configured the clockwork RNN [18] with 5 equal-sized hidden state blocks with update
periods (1, 2, 4, 8, 16).

Figure 4.6 shows that while all models achieved similar validation losses, LSTM and GRUs
trained much faster and achieved lower training loss. Since Zaremba [113] find similar em-

1https://github.com/lmjohns3/theanets

32 Automatic stylistic composition with deep LSTM

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Tr
ain

in
g
lo
ss

dropout=0.0
dropout=0.1
dropout=0.2
dropout=0.3
dropout=0.4
dropout=0.5

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

Va
lid

ati
on

lo
ss

dropout=0.0
dropout=0.1
dropout=0.2
dropout=0.3
dropout=0.4
dropout=0.5

Training curves for various dropout settings

Fig. 4.7 Dropout acts as a regularizer, resulting in larger training loss but better generalization
as evidenced by lower validation loss. A setting of dropout=0.3 achieves best results for our
model.

pirical performance between LSTM and GRUs and Nayebi and Vitelli [84] observe LSTM
outperforming GRUs in music applications, we choose to use LSTM as the memory cell for
all following experiments.

The increasing validation loss over time in fig. 4.6 is a red flag suggesting that overfit-
ting is occurring. This observation motivates the exploration of dropout regularization in sec-
tion 4.2.5.

4.2.5 Optimizing the LSTM architecture
After settling on LSTM as the memory cell, we conducted remaining experiments using the
torch-rnn Lua software library. Our switch was motivated by support for GPU training (see
table 4.3 on page 34), dropout, and batch normalization.

Dropout regularization improves validation loss

The increasing validation errors in fig. 4.6 on page 31 prompted investigation of regularization
techniques. In addition to adding batch normalization, a technique known to reduce overfitting
and accelerate training [65], we also investigated the effects of different levels of dropout by
varying the dropout parameter.

The experimental results are shown in fig. 4.7. As expected, dropout acts as a regularizer
and reduces validation loss from 0.65 down to 0.477 (when dropout=0.3). Training loss has
slightly increased, which is also unexpected as application of dropout during training intro-
duces additional noise into the model.

4.2 Design and validation of a generative model for music 33

0 20 40 60 80 100 120
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ain

in
g
lo
ss

0 20 40 60 80 100 120
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Va
lid

ati
on

lo
ss

Full training curve for best model

Fig. 4.8 Training curves for the overall best model. The periodic spikes correspond to resetting
of the LSTM state at the end of a training epoch.

Overall best model

We perform a grid search through the following parameter grid:

• num_layers ∈ {1, 2, 3, 4}

• rnn_size ∈ {128, 256, 384, 512}

• wordvec ∈ {16, 32, 64}

• seq_length ∈ {64, 128, 256}

• dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

A full listing of results is provided in fig. C.5 on page 84.
The optimal hyperparameter settings within our grid was found to be num_layers = 3,

rnn_size =, wordvec = 32, seq_length = 128 dropout = 0.3. Such a model achieves
0.324 and 0.477 cross entropy losses on training and validation corpuses respectively. Fig-
ure 4.8 plots the training curve of this model and shows that training converges after only 30
iterations (≈ 28.5 minutes on a single GPU).

To confirm local optimality, we perform perturbations about our final hyperparameter set-
tings in figs. C.6 to C.10. Our analysis of these experiments yield the following insights:

1. Depth matters! Increasing num_layers can yield up to 9% lower validation loss. The
best model is 3 layers deep, any further and overfitting occurs. This finding is unsur-
prising: the dominance of deep RNNs in polyphonic modelling was already noted by
Pascanu et al. [87]

34 Automatic stylistic composition with deep LSTM

Table 4.3 Timing results comparing CPU and GPU training of the overall best model (sec-
tion 4.2.5 on page 33)

Single Batch 30 Epochs (seconds)
mean (sec) std (sec) (minutes)

CPU 4.287 0.311 256.8
GPU 0.513 0.001 28.5

2. Increasing hidden state size (rnn_size) improvesmodel capacity, but causing overfitting
when too large

3. The exact size of the vector embeddings (wordvec) did not appear significant

4. While training losses did not change, increasing the BPTT truncation length (seq_length)
decreased validation loss, suggesting improved generalization

4.2.6 GPU training yields 800% acceleration
Consistent with prior work [102, 68], timing results table 4.3 from training our overall best
model confirmed a 800% speedup enabled by the GPU training implemented in torch-rnn.

4.3 Results and comparison
As done by [6, 13], we quantitatively evaluate our models using cross entropies and perplexities
on a 10% held-out validation set. Our best model (fig. C.5 on page 84) achieves cross-entropy
losses of 0.323 on training data and 0.477 on held-out test data, corresponding to a train-
ing perplexity of 1.251 bits and a test perplexity of 1.391. As expected, the deep LSTM
model achieves more than 0.6 bits lower than any validation perplexity obtained by the
𝑁-gram models compared in table 4.2 on page 30.

We find ourselves in front of an attempt, as objective
as possible, of creating an automated art, without any
human interference except at the start, only in order
to give the initial impulse and a few premises, like in
the case of…nothingness in the Big Bang Theory

Hoffmann [62]

5
Opening the black box: analyzing the

learned music representation

A common criticism of deep learning methods are their lack of interpretability, an area where
symbolic rule-based methods particularly excel. In this section, we argue the opposite view-
point and demonstrate that characterization of the concepts learned by themodel can be surpris-
ingly insightful. The benefits of cautiously avoiding prior assumptions pay off as we discover
the model itself learns musically meaningful concepts without any supervision.

5.1 Investigation of neuron activation responses to applied
stimulus

Inspired by stimulus-response studies performed in neuroscience, we choose to characterize
the internals of our sequence model by applying an analyzed music score as a stimulus and
measuring the resulting neuron activations. Our aim is to see if any of the neurons have learned
to specialize to detect musically meaningful concepts.

We use as stimulus the music score shown in fig. 5.1, which has already been preprocessed
as described in section 4.1.1 on page 22. To aid in relating neuron activities back to music the-
ory, chords are annotated with Roman numerals obtained using music21’s automated analysis.

36 Opening the black box: analyzing the learned music representation

Note that Roman numeral analysis involves subjectivity, and the results of automated analyses
should be carefully interpreted.

5.1.1 Pooling over frames
In order to align and compare the activation profiles with the original score, all the activations
occurring in between two chord boundary delimiters must be combined. This aggregation of
neuron activations from higher resolution (e.g. note-by-note) to lower resolution (e.g. frame-by-
frame) is reminiscent of pooling operations in convolutional neural networks [94]. Motivated
by this observation, we introduce a method for pooling an arbitrary number of token-level
activations into a single frame-level activation.

Let 𝑦(𝑙)
𝑡𝑚∶𝑡𝑛 denote the activations (e.g. outputs) of layer 𝑙 from the 𝑡𝑚th input token 𝑥𝑡𝑚 to the

𝑡𝑛th input token 𝑥𝑡𝑛 . Suppose that 𝑥𝑡𝑚 and 𝑥𝑡𝑛 are respectively the 𝑚th and 𝑛th chord boundary
delimiters within the input sequence. Define the max-pooled frame-level activations �̃�(𝑙)

𝑛 to
be the element-wise maximum of 𝑦(𝑙)

𝑡𝑚∶𝑡𝑛 , that is:

�̃�(𝑙)
𝑛 ≔ [max

𝑡𝑚<𝑡<𝑡𝑛
𝑦(𝑙)

𝑡,1, max
𝑡𝑚<𝑡<𝑡𝑛

𝑦(𝑙)
𝑡,2, ⋯ , max

𝑡𝑚<𝑡<𝑡𝑛
𝑦(𝑙)

𝑡,𝑁 (𝑙)]
⊺

(5.1)

where 𝑦(𝑙)
𝑡,𝑖 is the activation of neuron 𝑖 in layer 𝑙 at time 𝑡 and 𝑁 (𝑙) is the number of neurons in

layer 𝑙. Notice that the pooled sequence �̃� is now indexed by frames rather than by tokens and
hence corresponds to time-steps.

We choose to perform max pooling because it preserves the maximum activations of each
neuron over the frame. While pooling methods (e.g. sum pooling, average pooling) are possi-
ble, we did not find significant differences in the visualizations produced.

The max-pooled frame-level activations are shown in fig. 5.2 As a result of pooling, the
horizontal axis can be aligned and compared against the stimulus fig. 5.1. This is note the case
for unpooled token-level activations (see fig. C.4 on page 85).

Notice the vertical bands corresponding to when a chord/rest is held for multiple frames.
Also, the vector embedding corresponding to (e.g. near frames 30 and 90 in fig. 5.2 top) are
sparse, showing up as white smears on the LSTM memory cells at all levels of the model.

5.1.2 Probabilistic piano roll: likely variations of the stimulus
The bottom panel in fig. 5.2 shows the model’s predictions for tokens in the next frames, where
the tokens are arranged according to some arbitrary ordering of tokens within the vocabulary.
To aid interpretation, the tokens can bemapped back to their corresponding pitches and laid out

5.1 Investigation of neuron activation responses to applied stimulus 37

5

9

13

 

    

 





 

   

 

  
      

       
   

 
   

       
             

 


     

 
  


  

  
              

         



     











44 



 











  

I

vi

V I IV

vi vii vi

I vV

VI I IV

V iii I

I V Vv

I

iii I

vi vii

I vi

vi vi vi

vii vi vi

v

vi v

V

vi vi

V

vii

I

vi v

ii

vi

IV V

V

V

v

V

I

iii

iii

vi

vi vi v

I

v

IV

V

V vi

V

i

v

I

vi

V

v

I

I I vi vi


 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Measure number

G2

A2

B2
C3

D3

E3
F3

G[3
G3

A[3
A3

B3
C4

D4

E4
F4

G[4
G4

A[4
A4

B4
C5

D5

P
it

ch

I V I IV I VvViiiI I vi vii vivivivvi viviivi I V I IV I VvViiiI I vi vii vivivivvi viviivi vviVv Iiiiviviv vV V vviv I IviviV V I iiIVVVViiivi I IVVvi i I V I

music21 Roman numeral analysis

Fig. 5.1 Top: The preprocessed score (BWV133.6) used as input stimulus with Roman numeral
analysis annotations obtained from music21; Bottom: The same stimulus represented on a
piano roll

38 Opening the black box: analyzing the learned music representation

0 50 100 150 200 250

0

5

10

15

20

25

30V
ec

to
r

em
b

ed
d

in
gs

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

music21 Roman numeral analysis

0 50 100 150 200 250

0

50

100

150

200

250

L
ay

er
1

L
S

T
M

h
id

d
en

st
at

e

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 50 100 150 200 250

0

50

100

150

200

250

L
ay

er
2

L
S

T
M

h
id

d
en

st
at

e

0

1

2

3

4

5

6

7

8

9

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 50 100 150 200 250

0

50

100

150

200

250

L
ay

er
3

L
S

T
M

h
id

d
en

st
a
te

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 50 100 150 200 250

0

20

40

60

80

100

F
u

ll
y
-c

on
n

ec
te

d
ou

tp
u

ts

0
3
6
9
12
15
18
21
24
27

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 50 100 150 200 250

frames processed

0

20

40

60

80

100

N
ex

t-
fr

am
e

p
re

d
ic

ti
on

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

Fig. 5.2 Neuron activations after max pooling over frames

5.1 Investigation of neuron activation responses to applied stimulus 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Measure number

G1
A1
B1
C2

C#2
D2
E-2
E2
F2

F#2
G2

G#2
A2

B-2
B2
C3

C#3
D3
E-3
E3
F3

F#3
G3

G#3
A3

B-3
B3
C4

C#4
D4
E-4
E4
F4

F#4
G4

G#4
A4

B-4
B4
C5

C#5
D5
E-5
E5
F5

F#5
G5

G#5
A5

B-5
B5
C6
|||
(.)

START
END

P
it

ch

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 5.3 Probabilistic piano roll of next note predictions. The model assigns high probability
to fermatas near ends of phrases, suggesting an understanding of phrase structure in chorales.

to reconstruct a probabilistic piano roll[37] consisting of the model’s sequence of next-frame
predictions as it processes the input. This is shown in fig. 5.3.

One surprising insight from fig. 5.3 is the high probability predictions for fermatas (third
from top “(.)”) near the end of phrases. This could indicate the model has managed to learned
a notion of phrase structure.

Another interesting row of fig. 5.3 corresponds to frame delimiters (fourth from top, “|||”).
Notice that the predictions for frame delimiters are particularly strong during rests. This is
because rests are encoded as empty frames, so the large probability values indicate that the
model has learned to prolong periods of rests. At the end of rest periods, the model tends to
assign probability across awide range of notes, suggesting that there aremore permissible notes
to play at the end of a rest than in the middle of a phrase. Finally, the probability assigned to
fermatas is larger near the ends of phrases, suggesting that the model has learned some notion
of of phrasing within music.

However, it may also not be very significant. Notice that the probabilistic piano roll in
fig. 5.3 closely resembles the stimulus. This is because the recurrent inputs are taken from the
stimulus rather than sampled from the model’s predictions (a.k.a. [112]), so a model which
predicts to only continue holding its input would produce a probabilistic piano roll identical to
the stimulus delayed by one frame.

40 Opening the black box: analyzing the learned music representation

5.1.3 Neurons specific to musical concepts
Research in convolutional networks has shown that individual neurons within the network of-
tentimes specialize and specifically detect certain high-level visual features [115]. Extending
the analogy to musical data, we might expect certain neurons within our learned model to act
as specific detectors to certain musical concepts.

To investigate this further, we look at the activations over time of individual neurons within
the LSTM memory cells. We discover certain neurons whose activities appear correlated to
specific motifs, chord progression, and phrase structures, and show their activity profiles in
fig. 5.4.

Given our limited knowledge of music theory, we provided the activation profiles for our
collaborator Dr. Mark Gotham Gotham [51], who provided the following remarks:

• The first two (Layer 1, Neuron 64 / Layer 1, Neuron 138) seem to pick out (specifically)
perfect cadence with root position chords in the the tonic key.

• There are no imperfect cadences here; just one interruptions into bar 14.

• Layer 1, Neuron 87: the I6 chords on the first downbeat, and its reprise 4 bars later.

• Layer 1, Neuron 151: the two equivalent a minor (originally b minor) cadences that end
phrases 2 and 4.

• Layer 2, Neuron 37: Seems to be looking for I6 chords: strong peak for a full I6; weaker
for other similar chords (same bass).

• The rest are less clear to me.

Dr. Gotham’s analysis suggests that while some neurons are ambiguous to interpretation, other
neurons have learned highly specific and musically relevant concepts.

To our knowledge, this is the first reported result demonstrating LSTM neurons special-
izing to detect musically meaningful features. As we were careful to avoid imposing prior
assumptions when designing the model, these neurons learned to specialize as a result of ex-
posure to the Bach data. While we are hesitant to make broader conclusions from this single
experiment, the implications of this finding are tremendously exciting for music theorists and
deep learning researchers alike. We propose future work in this area in section 8.3 on page 59.

5.1 Investigation of neuron activation responses to applied stimulus 41

Fig. 5.4 Activation profiles demonstrating that neurons have specialized to become highly spe-
cific detectors of musically relevant features

6
Chorale harmonization

Every aspiring music theorist is at some point tasked with composing simple pieces of music
in order demonstrate understanding of the harmonic rules of Western classical music. These
pedagogical exercises often include harmonization of chorale melodies, a task which is viewed
as sufficiently constrained to allow a composer’s basic technique to be judged.

Mirroring the pedagogy for music students, this chapter evaluates the learned deep LSTM
model’s ability on various harmonization tasks. Unlike automatic composition, where the
model is free compose a score of music without any constraints, in harmonization tasks one or
more of the parts are fixed and only the remaining are generated.

In music education, harmonization of a given melody is considered a more elementary task
than generation of a novel chorale [30, 90]. However, these expectations may not be valid for
our model, which was trained without any consideration of the future notes occurring in the
providedmelody. Our experiments in this chapter will yield a definitive answer to this question.

6.1 Adapting the automatic composition model
Recall that chapter 5 gave us a RNN model ̃𝑃 (𝑥𝑡+1|𝑥𝑡,ℎ𝑡−1), which combined with a fixed ini-
tial hidden state ℎ0 yields a sequential prediction model ̃𝑃 (𝑥𝑡|𝑥1∶𝑡−1) approximating the true
distribution 𝑃 ∗(𝑥𝑡+1|𝑥𝑡). In this section, we describe a method for applying such a sequential

44 Chorale harmonization

prediction model to produce chorale harmonizations. The proposed technique is equivalent
to a 1-best greedy search through a lattice constrained by the fixed melody line, and we will
explore how solutions from the lattice processing literature might be applied.

In chorale harmonization, we are tasked to compose the notes for a subset of parts which are
harmonically and stylistically compatible with the fixed parts. To be concrete, let {𝑥𝑡}𝑇

𝑡=1 be
a sequence of tokens representing an encoded score. Let 𝛼 ⊂ {1, 2, ⋯ , 𝑇 } be a multi-index
and suppose �̂�𝛼 correspond to the fixed token values for the given parts in the harmonization
task. We are interested in optimizing the conditional distribution:

𝑥∗
1∶𝑇 = argmax

𝑥1∶𝐿
𝑃 (𝑥1∶𝐿|𝑥𝛼 = �̂�𝛼) (6.1)

First, any proposed solution �̃�1∶𝑇 must satisfy �̃�𝛼 = �̂�𝛼, so the only decision variables are �̃�𝛼𝑐

where 𝛼𝑐 ≔ {1, 2, ⋯ , 𝑇 } ⧵ 𝛼. Hinton and Sejnowski [59] refer to this constraint as “clamping”
the generative model.

The remaining task is to choose values for �̃�𝛼𝑐 . We propose a simple greedy strategy:

�̃�𝑡 =
⎧⎪
⎨
⎪⎩

�̂�𝑡 if 𝑡 ∈ 𝛼
argmax𝑥𝑡

𝑃 (𝑥𝑡|�̃�1∶𝑡−1) otherwise
(6.2)

where the tilde on the previous tokens �̃�1∶𝑡−1 indicate that they are equal to the actual previous
argmax choices.

6.1.1 Shortcomings of the proposed model
We admit that this approach is a greedy approximation: we are not guaranteed �̂�1∶𝑇 . In fact,
we can view the problem as a search over a lattice of possible trajectories �̃�1∶𝑇 constrained
such that �̃�𝛼 = �̂�𝛼. Under the lattice framework, our strategy is recognized as a beam search
with beam width 1. A wider beam-width which maintained 𝑁-best hypotheses such as in Liu
et al. [76] would allow the model to partially recover from mistakes made by greedy action
selection. We leave this extension for future work.

6.2 Datasets
We create datasets where one or more parts are to be harmonized by the model:

1. A single parts: Soprano (S), Alto (A), Tenor (T), or Bass (B).

2. The middle two parts (AT).

6.3 Results 45

S A T B AT ATB
TER 0.532 0.442 0.235 0.241 0.686 0.718
FER 0.532 0.442 0.235 0.241 0.787 0.878

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro
rR

ate

Harmonization model error rates

TER
FER

Fig. 6.1 Token error rates (TER) and frame error rates (FER) for various harmonization tasks

3. All parts except Soprano (ATB). This is what is usually meant by harmonization.

It is widely accepted that these tasks successively increase in terms of difficulty [30]. Of par-
ticular interest is the AT case. Bach oftentimes only wrote the Soprano and Bass parts of a
piece, leaving the middle parts to be filled in by students. Based on these observations, we
hypothesize that performance will be similar for harmonizing any single part and successively
deteriorate for the AT and ATB cases respectively.

6.3 Results

6.3.1 Error rates harmonizing Bach chorales
We deleted different subsets of parts from a held-out validation corpus consisting of 10% of the
data and used the method proposed in eq. (6.2) to harmonize the missing parts. We evaluate our
model’s error rate predicting individual tokens (token error rate, TER) as well as all tokens
within frames (frame error rate, FER) and show our results in fig. 6.1.

Our results are surprising. Contrary to expectations, we found that error rates were signifi-
cantly higher for S and A than for T and B. One possible explanation for this result is our design
decision in section 4.1.2 on page 26 to order the notes within a frame in SATB order. While the
model must immediately predict the Soprano part without any knowledge of the other parts, it
has already processed all of the other parts and can utilize information about harmonic context
when predicting the Bass parts. To further validate this idea, one could investigate trying other
orderings in the encoding, which we propose as extension work.

46 Chorale harmonization
Twinkle	Twinkle	Little	Star	Harmonization

BachBot

6

Soprano

Alto

Tenor

Bass

A.

S.

T.

B.






 





 
  

  
  

 
  

  
  

  
   

  
  

  
  

  
  

  
  


 

  
  

  
   

   
  

















   
   













  


 
 

  
       













   








  
     















   







    












44
44
44
44






 






Fig. 6.2 BachBot’s ATB harmonization to a Twinkle Twinkle Little Star melody

6.3.2 Harmonizing popular tunes with BachBot
One question we would like to investigate is the generality of the concepts extracted by the
model. Although it is trained for sequential prediction of Bach chorales, chapter 5 demonstrated
that the model learns high-level music theoretic concepts. We hypothesized that these high-
level concepts may enable the model to generalize to data which may significantly differ from
its training data.

To test this hypothesis, we used BachBot to produce a harmonization for Twinkle Twinkle
Little Star, a popular English lullaby published more than 50 years after Bach’s era.

To our surprise, we found that BachBot was not only able to generate a harmonically pleas-
ant harmonization, but that the harmonization exhibited features reminiscent of Bach’s
Baroque style. This result demonstrates that BachBot has successfully extracted statistical
regularities from its input corpus which are involved in giving Baroque music its sense of
style.

7
Large-scale subjective human evaluation

Evaluation of automatic composition systems is still a difficult question with no generally-
accepted solution. While many recent models use log-likelihood on the JCB Chorales [2] as
as a benchmark for comparing performance [13, 6, 87, 49, 113, 77], this evaluation merely
measures a model’s ability to approximate a probability distribution given limited data and
does not correspond with success as an automatic composition problem.

Pearce and Wiggins [89] and Pearce, Meredith, and Wiggins [88] attribute difficulty in
evaluation due to lack aim, claiming that studies in automatic music generation do not clearly
define their goals. They proceed to differentiate between three different goals for automatic
music generation research, each with different evaluation criteria:

1. Automatic composition

2. Design of compositional tools

3. Computational modelling of music style/cognition

While our model design and analysis has happened to yield interesting results relating to
music cognition (chapter 5), it has not been the aim of our work. As initially stated in chapter 1,
the aim of our work is automatic composition: to produce a system which automatically
composes music indistinguishable from Bach.

48 Large-scale subjective human evaluation

To directly measure our success on this task, we adapt Alan Turing’s proposed “Imitation
Game” [108] into a musical Turing test. Although some authors [4] are critical of such tests’
ability to provide meaningful data which can be utilized to improve the system, their recom-
mended alternative of listener studies with music experts is cost-prohibitive and generates a
small sample of free-form text responses which must be manually analyzed.

7.1 Evaluation framework design
In this section, we describe the design of a software framework for conducting large-scale a
musical Turing test which was deployed to http://bachbot.com/ and used to evaluate our model
on human evaluators.

7.1.1 Software architecture
We architected the evaluation framework with two requirements in mind:

1. It must scale in a cost-efficient manner to meet rapid growth

2. It must be easily adaptable for usage by others

Our scalability requirement motivated our choice for using a cloud service provider to man-
age infrastructure. While multiple options for providers, we chose to useMicrosoft Azure. Our
application is built using Node.js1 and is hosted by Azure App Services. We host static con-
tent (e.g. audio samples) using Azure CDN to offload bandwidth. Responses collected from the
survey are stored in Azure BlobStore, a distributed object store supporting batch MapReduce
processing using Hadoop on HDInsight.

The frontend is built using React2 and Redux3. We chose these frameworks because their
current popularity in front-end web development implies familiarity by a large number of users,
achieving our second software requirement. Additionally, Redux enables fine-grained instru-
mentation of user actions and allows us to collect detailed data such as when users play/pause
the sample.

7.1.2 User interface
The landing page for http://bachbot.com/ is shown in fig. 7.1.

1https://nodejs.org/en/
2https://facebook.github.io/react/
3http://redux.js.org/

http://bachbot.com/
http://bachbot.com/
https://nodejs.org/en/
https://facebook.github.io/react/
http://redux.js.org/

7.1 Evaluation framework design 49

Fig. 7.1 The first page seen by a visitor of http://bachbot.com

Clicking “Test Yourself” redirects the participant to a user information form (fig. 7.2) where
users self-report their age group prior music experience into the categories shown.

After submitting the background form, users were redirected to the question response page
shown in fig. 7.3. This page contains two audio samples, one extracted from Bach and one
generated by BachBot, and users were asked to select the sample which sounds most similar
to Bach. Users were asked to provide five consecutive answers and then the overall percentage
correct was reported.

7.1.3 Question generation
Questions were generated for both harmonizations produced using the method proposed in
chapter 6 as well as automatic compositions generated by sequentially sampling the model
from chapter 4. We re-use notation from section 6.2 and use “SATB” to denote unconstrained
automatic composition.

http://bachbot.com

50 Large-scale subjective human evaluation

Fig. 7.2 User information form presented after clicking “Test Yourself”

Question type # questions available Expected # responses per participant
S 2 0.25
A 2 0.25
T 2 0.25
B 2 0.25
AT 8 1
ATB 8 1
SATB 12 2

Table 7.1 Composition of questions on http://bachbot.com

For each question, a random chorale was selected without replacement from the corpus
and paired with a corresponding harmonization. SATB samples were paired with chorales
randomly sampled from the corpus. The five question answered by any given participant were
comprised of one S/A/T/B question chosen at random, one AT question, one ATB question,
and two original compositions. See table 7.1 for details.

7.1.4 Promoting the study
Unlike prior studies which leverage paid services like Amazon MTurk for human feedback
[91], we do not not compensate participants and promote our study only through social media
and personal contacts. Participation was voluntary and growth was organic; we did not solicit
any paid responses or advertising.

http://bachbot.com

7.2 Results 51

Fig. 7.3 Question response interface used for all questions

We found that 50% of participants were referred from social media, 4.8% through other
websites and blogs, 2.6% through search engine results, and the remaining 42.6% had directly
accessed bachbot.com,

7.2 Results

7.2.1 Participant backgrounds and demographics
At the time of writing, we received a total of 759 participants from 54 different countries. After
selecting only the first response per IP address and filtering down to participants whom had
played both choices in every question at least once, we are left with 721 participants answering
5 questions each to yield a total of 3605 responses.

As evidenced by fig. 7.4 on the next page, our participant is diverse and includes participants
from six different continents. fig. 7.5 on page 53 shows that the majority of our participants
are between 18 − 45 and have played an instrument. The large number of participants with
significant music experience is larger than our expectations: more than 24.13% of participants
have either formally studied or taught music theory. This large proportion of advanced par-
ticipants shows that voluntary studies promoted through social media can generate significant
participation by expert users interested in the problem domain.

bachbot.com

52 Large-scale subjective human evaluation

Country
United States
United Kingdom
Japan
Germany
France
China
Norway
Czech Republic
Canada
Italy
Poland
Australia
Spain
Switzerland
South Korea
Luxembourg
Austria
Belgium
Hong Kong
Ireland
Mexico
Vietnam
(not set)
India
Finland
Russia
Belarus
Denmark

Sessions % All Sessions
Country
United States 318 28.0
United Kingdom 308 27.0
Japan 114 10.0
Germany 69 6.0
France 33 3.0
China 30 3.0
Norway 23 2.0
Czech Republic 21 2.0
Canada 20 2.0
Italy 13 1.0
Poland 13 1.0
Australia 11 1.0
Spain 11 1.0
Switzerland 10 1.0
South Korea 10 1.0
Luxembourg 10 1.0
Austria 9 1.0
Belgium 9 1.0
Hong Kong 9 1.0
Ireland 8 1.0
Mexico 8 1.0
Vietnam 8 1.0
(not set) 64 1.0

Fig. 7.4 Geographic distribution of participants

7.2 Results 53

under18 18to25 26to45 46to60 over60

novice 40.0 335.0 445.0 130.0 20.0

intermediate 15.0 685.0 850.0 170.0 45.0

advanced 5.0 300.0 240.0 55.0 10.0
expert 0.0 55.0 160.0 30.0 15.0

0
200
400
600
800

1000
1200
1400
1600
1800

Co
un

t

Participant demographics

Music experience
novice
intermediate
advanced
expert

Fig. 7.5 Demographics of participants

S A T B AT ATB SATB
Proportion 0.76 0.61 0.64 0.49 0.73 0.67 0.59

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pr
op

or
tio

n
co

rre
ct

Performance by question type

Fig. 7.6 Proportion of participants correctly discriminating Bach from BachBot for each ques-
tion type.

7.2.2 BachBot’s performance results
Figure 7.6 shows the performance of BachBot on various question types. The SATB column
shows that participants on average successfully discriminated Bach from BachBot only 59%
of the time. As the baseline method of randomly guessing between the two choices in fig. 7.3
achieves 50%, our findings suggest that the pool of participants on average could only per-
form 9% better than random guessing. This is a much lower number than we anticipated
and provides strong evidence affirming successful accomplishment of our research goals.

In fig. 7.7, responses are further segmented by music experience. Unsurprisingly, we find
that the proportion of correct responses correlates positively with experience.

The weaker performance of BachBot’s outputs on harmonization questions (fig. 7.6, AT,
ATB) compared to automatic composition questions (fig. 7.6, SATB) is counterintuitive as

54 Large-scale subjective human evaluation

S A T B AT ATB SATB
novice 0.67 0.56 0.58 0.43 0.63 0.62 0.51
intermediate 0.75 0.59 0.65 0.52 0.73 0.67 0.58
advanced 0.82 0.69 0.65 0.54 0.79 0.66 0.65
expert 1.0 0.7 0.77 0.38 0.94 0.83 0.76

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
co

rre
ct

Performance by question type and music experience

Music experience
novice
intermediate
advanced
expert

Fig. 7.7 Proportion of correct responses for each question type and music experience level.

one might expect the provided parts to better aid the model to create more Bach-like music.
However, this result is expected and can be explained by the shortcomings of our greedy 1-best
harmonization method noted in section 6.1.1 on page 44.

BachBot’s results compare favourably against a recently published comparable automatic
stylistic composition system [20], which found that 5 out of 25 participants were able to signif-
icantly differentiate their generated compositions from Bach. However, the comparison must
be interpreted with case as Collins et al. [20] evaluate on a highly experienced participant pool
averaging 8.56.

When only a single part is composed by BachBot, we find the results vary significantly
across different parts. Composing only the Soprano part proved to be the easiest to discrimi-
nate, an unsurprising result given that in chorale style music soprano parts are responsible for
the melody [30]. Composing only the Alto or Tenor parts achieved similar performance as
composing all four parts.

However, using BachBot to compose new bass parts for Bach chorales yielded surprisingly
successful results. Figure 7.6 shows that participants could not correctly discriminate Bach
from BachBot any better than random guessing, and fig. 7.7 showed that even advanced and
expert participants could not distinguish the two. This may be due to BachBot’s lower error
rates harmonizing Bass parts compared to any other part (fig. 6.1 on page 45), or it could also
suggest that Bass parts are least significant in defining Bach’s compositional style.

7.2 Results 55

BW
V-

10
2.
7
vs

BW
V-

10
2.
7-
T

BW
V-

11
.6

vs
BW

V-
11

.6
-A

T
BW

V-
11

4.
7
vs

BW
V-

11
4.
7-
T

BW
V-

12
1.
6
vs

BW
V-

12
1.
6-
S

BW
V-

12
7.
5
vs

BW
V-

12
7.
5-
AT

BW
V-

15
4.
3
vs

BW
V-

15
4.
3-
AT

B
BW

V-
15

4.
8
vs

ou
t-2

0.
m
p3

-S
AT

B
BW

V-
16

4.
6
vs

ou
t-4

5.
m
p3

-S
AT

B
BW

V-
16

6.
6
vs

BW
V-

16
6.
6-
AT

BW
V-

16
8.
6
vs

BW
V-

16
8.
6-
AT

B
BW

V-
24

8.
5
vs

BW
V-

24
8.
5-
AT

B
BW

V-
24

8.
59

vs
ou

t-5
2.
m
p3

-S
AT

B
BW

V-
26

8
vs

BW
V-

26
8-
A

BW
V-

27
.6

vs
BW

V-
27

.6
-B

BW
V-

27
0
vs

BW
V-

27
0-
AT

B
BW

V-
27

6
vs

BW
V-

27
6-
AT

B
BW

V-
29

3
vs

BW
V-

29
3-
B

BW
V-

30
7
vs

ou
t-5

6.
m
p3

-S
AT

B
BW

V-
31

0
vs

BW
V-

31
0-
AT

BW
V-

31
2
vs

ou
t-1

0.
m
p3

-S
AT

B
BW

V-
34

4
vs

ou
t-5

9.
m
p3

-S
AT

B
BW

V-
37

2
vs

BW
V-

37
2-
AT

B
BW

V-
37

8
vs

BW
V-

37
8-
AT

B
BW

V-
38

1
vs

BW
V-

38
1-
AT

BW
V-

38
3
vs

ou
t-3

3.
m
p3

-S
AT

B
BW

V-
39

3
vs

ou
t-6

0.
m
p3

-S
AT

B
BW

V-
39

8
vs

ou
t-2

8.
m
p3

-S
AT

B
BW

V-
41

1
vs

BW
V-

41
1-
AT

BW
V-

41
9
vs

BW
V-

41
9-
S

BW
V-

42
5
vs

BW
V-

42
5-
AT

B
BW

V-
43

0
vs

BW
V-

43
0-
AT

BW
V-

43
6
vs

ou
t-6

3.
m
p3

-S
AT

B
BW

V-
43

8
vs

BW
V-

43
8-
A

BW
V-

56
.5

vs
ou

t-5
4.
m
p3

-S
AT

B
BW

V-
65

.2
vs

BW
V-

65
.2
-A

T
BW

V-
89

.6
vs

ou
t-1

9.
m
p3

-S
AT

B

name

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
co

rre
ct

Performance by individual questions

Fig. 7.8 Proportion of correct responses broken down by individual questions.

Certain compositions by BachBot cannot be significantly discriminated Bach

fig. 7.8 shows the proportion correct of correct responses received for each question. Encour-
agingly, it shows that more than a quarter of the SATB pairs were not insignificantly different
from baseline, suggesting thatwhile not always consistent BachBot is capable of composing
music which the average participant cannot discern from actual Bach. While we lack the
expertise, one valuable extension would be to review the samples which performed abnormally
well and poor and attempt to identify some regularities among them.

What can we say about the perception of music by the
silent majority of listeners, those for whom music is
written but who neither create music nor can articu-
late their musical experience? How do they acquire
their demonstrably sophisticated intuitions about mu-
sic patterns typical of their culture? Experiments in
the cognitive psychology of music have cast some light
on the first question. Recent developments in neural
net learning now enables us to explore the second.

Bharucha and Todd [12] 8
Discussion, Conclusion, and Future Work

8.1 Discussion and Conclusion
From the data generated by bachbot.com, we are comfortable claiming that we have success-
fully accomplished our stated research aim of building an automatic stylistic composition sys-
tem indistinguishable from actual Bach. Throughout our research, we made conscious effort
to avoid allowing prior assumptions influence model design. By doing so, the performance of
our model is a reflection of its ability to acquire music knowledge from data rather than the
validity of the researcher’s prior assumptions.

As a result of using our own music encoding scheme, we were unable to compare quanti-
tative performance metrics such as log likelihood against many literature values reported for
polyphonic modelling on the JCB Chorales [2]dataset. While this makes it difficult to evaluate
our success, we affirm that the benefits justify the cost. The goal of our research is automatic
stylistic composition, not probability density modelling. Hence, we prioritize producing real-
istic outputs and avoid the quantization distortion introduced by using JCB Chorales, opting
instead to evaluate by other means.

Using this sequential encoding scheme, we train a deep LSTM sequential prediction model
and discover that it learns music theoretic concepts without prior knowledge or explicit super-
vision. We then propose a method to utilize the sequential prediction model for harmonization

bachbot.com

58 Discussion, Conclusion, and Future Work

tasks. We acknowledge that our method is not ideal and discuss better alternatives in future
work. Our harmonization results reveal that this issue is significant and should be a priority
for any follow-up work.

Finally, we leveraged our model to generate harmonizations as well as novel compositions
and used the generated music in a large-scale music Turing test. Our results here confirm the
success of our project.

While many opportunities for extension are highlighted, we conclude that our stated re-
search aims have been reached. In other words, generating stylistically successful Bach chorales
is now more closed (as a result of BachBot) than open a problem.

8.2 Summary of contributions
In this thesis, we make the following contributions:

• We introduce sequential encoding scheme for music achieving time-resolution 2× that
of the commonly used JCB Chorales [2] dataset

• We demonstrate that a deep LSTM sequential prediction model trained on our encoding
scheme is capable of composing music less than 9% of average listeners can reliably
distinguish

• Our analysis of the neuron sensitivities within the learned LSTMmodel reveal that com-
mon music-theoretic concepts are acquired by the model without prior knowledge or
supervision, a phenomena which to our knowledge has not been reported previously

• Performed the largest (to the best of our knowledge as of Friday 12th August, 2016)
musical Turing test of an automatic composition system, which demonstrated that quality
data can be collected from voluntary internet surveys

In addition, we have open sourced the code for BachBot1 as well as our large-scale music
Turing test framework2. These projects have all been received with excitement by the open
source community and plans are in place to transfer the BachBot model to Google Magenta, a
team within TensorFlow [1] which is focused on machine learning applications within music.

1https://github.com/feynmanliang/bachbot
2https://github.com/feynmanliang/subjective-evaluation-server and https://github.com/

feynmanliang/subjective-evaluation-client

https://github.com/feynmanliang/bachbot
https://github.com/feynmanliang/subjective-evaluation-server
https://github.com/feynmanliang/subjective-evaluation-client
https://github.com/feynmanliang/subjective-evaluation-client

8.3 Extensions and Future Work 59

8.3 Extensions and Future Work

8.3.1 Improving harmonization performance
One significant opportunity for improvement is the harmonization method, which currently
yields less than impressive results (section 6.3). The problem is that the sequential model is
applied greedily with no accounting of the future constraints present in harmonization tasks.
Our current approach suffers because a 1-best greedy approach may make a locally-optimal
choice which severely impacts the likelihoods assigned by the model to the constrained future
token outputs.

A potential solution to address this is to apply bidirectional RNNs[53] and the sequence
to sequence framework[102] to map the constrained parts to the harmonized parts while ac-
counting for both past and future context. An attention mechanism similar to Bahdanau, Cho,
and Bengio [5] could be introduced on top of the bidirectional RNN to both enable the model
to selectively attend to specific time intervals within the context as well as provide insight into
what the model deems relevant when generating harmonies.

Another way to account for future constraints is view the problem in a lattice-based frame-
work. Here, each valid harmonization corresponds to a path through a lattice constrained by
the fixed parts to harmonize against. Under this lattice based interpretation, our strategy is rec-
ognized as a beam search with beam width 1. A wider beam-width which maintains 𝑁-best
hypotheses such as in Liu et al. [76] would allow the model to partially recover from mistakes
made by greedy action selection. Alternatively, a look-ahead search [85] extending to the next
fixed token could also be used to help account for future constraints.

8.3.2 Ordering of parts in sequential encoding
We also found that the performance of harmonizing a single voice was strongly correlated with
the order in which parts within the same frame were encoded (see section 4.1.2 on page 26).
This suggests that the encoding scheme may have a more significant impact on model per-
formance than we had imagined. We expect ordering the parts to be harmonized last should
improve the model as the fixed parts can now provide additional context aiding more consistent
harmony prediction.

8.3.3 Extensions to other styles and datasets
We use the Bach chorales because they are fairly homogeneous, widely available in a re-
spectable quantity, and well studied by music theorists. However, our proposed encoding

60 Discussion, Conclusion, and Future Work

scheme extends to arbitrary degrees of polyphony and musical style. As evidenced by fig. 6.2
on page 46, the learned model is already able to plausibly harmonize melodies which differ
significantly from Bach’s baroque style. An interesting extension would be to further inves-
tigate the limits of of our model’s generality and its failure modes by applying the model to
other styles of music.

8.3.4 Analyzing results using music theory
At many points in our work, additional experience in music theory may have yielded insights
not otherwise attainable. One instance of this is in fig. 7.8 on page 55, where we see that certain
samples are virtually indistinguishable fromBach while others can be identifiedmore than 80%
of the time. It would be valuable to understand what features are present in the failure cases
which make them easy to distinguish, a potential extension for any interested music theorists.

One last future work we believe to be particularly exciting is to extend section 5.1.3 on
page 40 and perform a statistical analysis of how closely the model neurons relate to input
musical ideas. For instance, the input could be fixed to some known feature (e.g. all perfect
cadences in the tonic key) and the neuronswhich fire could be examined. Alternatively, existing
understanding can be validated by annotation regions of a score exhibiting a particular musical
quality and searching for neurons with correlated activity.

References

[1] Martın Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Moray Allan and Christopher KI Williams. “allan2005”. In: Advances in Neural In-
formation Processing Systems 17 (2005), pp. 25–32.

[3] Adam Alpern. “Techniques for algorithmic composition of music”. In: On the web:
http://hamp. hampshire. edu/adaF92/algocomp/algocomp 95 (1995), p. 120.

[4] Christopher Ariza. “The interrogator as critic: The turing test and the evaluation of
generative music systems”. In: Computer Music Journal 33.2 (2009), pp. 48–70.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “#4 Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. In: (2015), pp. 1–15. arXiv: 1409.
0473. URL: http://arxiv.org/pdf/1409.0473v6.pdf.

[6] Justin Bayer et al. “On fast dropout and its applicability to recurrent networks”. In:
arXiv preprint arXiv:1311.0701 (2013).

[7] Matthew I Bellgard and Chi-Ping Tsang. “Harmonizing music the Boltzmann way”.
In: Connection Science 6.2-3 (1994), pp. 281–297.

[8] Samy Bengio et al. “Scheduled sampling for sequence prediction with recurrent neural
networks”. In:Advances inNeural Information Processing Systems. 2015, pp. 1171–
1179.

[9] Yoshua Bengio. “Learning deep architectures for AI”. In: Foundations and trends®
in Machine Learning 2.1 (2009), pp. 1–127.

[10] Yoshua Bengio andOlivier Delalleau. “On the expressive power of deep architectures”.
In:Lecture Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 6925 LNAI (2011), pp. 18–
36. ISSN: 03029743. DOI: 10.1007/978-3-642-24412-4_3. arXiv: 1206.5533.

[11] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning Long-TermDependen-
cies with Gradient Descent is Difficult”. In: IEEE Transactions on Neural Networks
5.2 (1994), pp. 157–166. ISSN: 1045-9227. DOI: 10.1109/72.279181. arXiv: arXiv:
1211.5063v2. URL: http://jmlr.org/proceedings/papers/v28/pascanu13.pdf.

[12] Jamshed J Bharucha and Peter M Todd. “Modeling the perception of tonal structure
with neural nets”. In: Computer Music Journal 13.4 (1989), pp. 44–53.

[13] Nicolas Boulanger-Lewandowski, Pascal Vincent, andYoshuaBengio. “Modeling Tem-
poral Dependencies in High-Dimensional Sequences: Application to Polyphonic Mu-
sic Generation and Transcription”. In: Proceedings of the 29th International Confer-
ence onMachine Learning (ICML-12)Cd (2012), pp. 1159–1166. arXiv: 1206.6392.

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/pdf/1409.0473v6.pdf
http://dx.doi.org/10.1007/978-3-642-24412-4_3
http://arxiv.org/abs/1206.5533
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/arXiv:1211.5063v2
http://arxiv.org/abs/arXiv:1211.5063v2
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://arxiv.org/abs/1206.6392

62 References

[14] Edmund Bowles. “Musicke’s handmaiden: Or technology in the service of the arts”.
In: The computer and music (1970), pp. 3–20.

[15] Tim O Brien and Iran Roman. “A Recurrent Neural Network for Musical Structure
Processing and Expectation”. In: CS224d: Deep Learning for Natural Language
Processing Final Projects (2016), pp. 1–9.

[16] Arthur E Bryson, Walter F Denham, and Stewart E Dreyfus. “Optimal programming
problems with inequality constraints”. In: AIAA journal 1.11 (1963), pp. 2544–2550.

[17] John Butt. “Bach-Werke-Verzeichnis”. In: Notes 55.4 (1999), pp. 890–893.
[18] Kyunghyun Cho et al. “Learning phrase representations using RNN encoder-decoder

for statistical machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).
[19] Ching-Hua Chuan and Elaine Chew. “A hybrid system for automatic generation of

style-specific accompaniment”. In:Proceedings of the 4th International JointWork-
shop on Computational Creativity. 2007, pp. 57–64.

[20] TomCollins et al. “Developing and evaluating computational models of musical style”.
In: Artificial Intelligence for Engineering Design, Analysis and Manufacturing
30.01 (2016), pp. 16–43.

[21] Wikimedia Commons. Comparison of various duple note values. File:Duple note
values comparison.png. 2012. URL: https://en.wikipedia.org/wiki/File:Duple_note_
values_comparison.png (visited on 08/10/2016).

[22] Grosvenor Cooper and Leonard BMeyer.The rhythmic structure of music. Vol. 118.
University of Chicago Press, 1963.

[23] David Cope. “Computer modeling of musical intelligence in EMI”. In:ComputerMu-
sic Journal 16.2 (1992), pp. 69–83.

[24] David Cope. “Experiments in Music Intelligence”. In: Proceedings of the Interna-
tional Computer Music Conference. 1987.

[25] David Cope. “The well-programmed clavier: Style in computer music composition”.
In: XRDS: Crossroads, The ACMMagazine for Students 19.4 (2013), pp. 16–20.

[26] David H Cope. Recombinant music composition algorithm and method of using
the same. US Patent 7,696,426. Apr. 2010.

[27] Pedro P Cruz-Alcázar and Enrique Vidal-Ruiz. “Learning regular grammars to model
musical style: Comparing different coding schemes”. In: International Colloquium
on Grammatical Inference. Springer. 1998, pp. 211–222.

[28] Michael Scott Cuthbert and Christopher Ariza. “music21: A toolkit for computer-aided
musicology and symbolic music data”. In: (2010).

[29] George Cybenko. “Degree of approximation by superpositions of a sigmoidal func-
tion”. In: Approximation Theory and its Applications 9.3 (1993), pp. 17–28. ISSN:
10009221. DOI: 10.1007/BF02836480.

[30] James Denny. The Oxford school harmony course. Vol. 1. Oxford University Press,
1960.

[31] Christine Denton and M Fillion. “The History of Musical Tuning and Temperament
during the Classical and Romantic Periods”. In: (1997).

https://en.wikipedia.org/wiki/File:Duple_note_values_comparison.png
https://en.wikipedia.org/wiki/File:Duple_note_values_comparison.png
http://dx.doi.org/10.1007/BF02836480

References 63

[32] Jacob Devlin et al. “Fast and Robust Neural Network Joint Models for Statistical Ma-
chine Translation.” In: ACL (1). Citeseer. 2014, pp. 1370–1380.

[33] MarkDolson. “Machine tonguesXII: Neural networks”. In:ComputerMusic Journal
13.3 (1989), pp. 28–40.

[34] Julie S Downs et al. “Are your participants gaming the system?: screening mechanical
turk workers”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM. 2010, pp. 2399–2402.

[35] Kemal Ebcioğlu. “An expert system for harmonizing four-part chorales”. In: Com-
puter Music Journal 12.3 (1988), pp. 43–51.

[36] D. Eck and J. Schmidhuber. “Finding temporal structure in music: Blues improvi-
sation with LSTM recurrent networks”. In: Neural Networks for Signal Process-
ing - Proceedings of the IEEE Workshop 2002-Janua (2002), pp. 747–756. ISSN:
0780376161. DOI: 10.1109/NNSP.2002.1030094.

[37] Douglas Eck and Jasmin Lapalme. “Learningmusical structure directly from sequences
of music”. In: University of Montreal, Department of Computer Science, CP 6128
(2008).

[38] Douglas Eck and Jürgen Schmidhuber. “A First Look at Music Composition using
LSTM Recurrent Neural Networks”. In: Idsia (2002). URL: http : / /www. idsia . ch /
%7B~%7Djuergen/blues/IDSIA-07-02.pdf.

[39] Salah El Hihi and Yoshua Bengio. “Hierarchical Recurrent Neural Networks for Long-
Term Dependencies.” In: NIPS. Vol. 400. Citeseer. 1995, p. 409.

[40] Jeffrey LElman. “Finding structure in time”. In:Cognitive science 14.2 (1990), pp. 179–
211.

[41] Johannes Feulner andDominikHörnel. “Melonet: Neural networks that learn harmony-
based melodic variations”. In: Proceedings of the International Computer Music
Conference. INTERNATIONALCOMPUTERMUSICACCOCIATION. 1994, pp. 121–
121.

[42] Judy A Franklin. “Jazz Melody Generation from Recurrent Network Learning of Sev-
eral Human Melodies.” In: FLAIRS Conference. 2005, pp. 57–62.

[43] Judy A Franklin. “Recurrent Neural Networks and Pitch Representations for Music
Tasks.” In: FLAIRS Conference. 2004, pp. 33–37.

[44] Judy A Franklin. “Recurrent neural networks for music computation”. In: INFORMS
Journal on Computing 18.3 (2006), pp. 321–338.

[45] Dylan Freedman. “Correlational Harmonic Metrics: Bridging Computational and Hu-
man Notions of Musical Harmony”. PhD thesis. 2015.

[46] Felix AGers and E Schmidhuber. “LSTM recurrent networks learn simple context-free
and context-sensitive languages”. In: IEEE Transactions on Neural Networks 12.6
(2001), pp. 1333–1340.

[47] Felix A Gers and Jürgen Schmidhuber. “Recurrent nets that time and count”. In: Neu-
ral Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Interna-
tional Joint Conference on. Vol. 3. IEEE. 2000, pp. 189–194.

http://dx.doi.org/10.1109/NNSP.2002.1030094
http://www.idsia.ch/%7B~%7Djuergen/blues/IDSIA-07-02.pdf
http://www.idsia.ch/%7B~%7Djuergen/blues/IDSIA-07-02.pdf

64 References

[48] Felix AGers, Nicol N Schraudolph, and Jürgen Schmidhuber. “Learning precise timing
with LSTM recurrent networks”. In: Journal of machine learning research 3.Aug
(2002), pp. 115–143.

[49] Kratarth Goel, Raunaq Vohra, and JK Sahoo. “Polyphonic music generation by mod-
eling temporal dependencies using a RNN-DBN”. In: International Conference on
Artificial Neural Networks. Springer. 2014, pp. 217–224.

[50] Christoph Goller and Andreas Kuchler. “Learning task-dependent distributed repre-
sentations by backpropagation through structure”. In: Neural Networks, 1996., IEEE
International Conference on. Vol. 1. IEEE. 1996, pp. 347–352.

[51] Mark Gotham. personal communication. Aug. 9, 2016.
[52] AlexGraves. “Generating sequenceswith recurrent neural networks”. In: arXiv preprint

arXiv:1308.0850 (2013).
[53] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classification with bidi-

rectional LSTM networks”. In: Proceedings of the International Joint Conference
on Neural Networks 4 (2005), pp. 2047–2052. ISSN: 08936080. DOI: 10 . 1109 /
IJCNN.2005.1556215.

[54] Niall Griffith and Peter M Todd.Musical networks: Parallel distributed perception
and performance. MIT Press, 1999.

[55] PDP Research Group et al. “Parallel distributed processing: Explorations in the mi-
crostructure of cognition: Vol. 1”. In: Foundations. Cambridge, MA: MIT Press
(1986).

[56] Stephen Handel. Listening: An introduction to the perception of auditory events.
The MIT Press, 1993.

[57] Kenneth Heafield et al. “Scalable Modified Kneser-Ney Language Model Estimation”.
In: Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics. Sofia, Bulgaria, Aug. 2013. URL: http : / / kheafield . com/professional /
edinburgh/estimate%5C_paper.pdf.

[58] Hermann Hild, Johannes Feulner, and Wolfram Menzel. “HARMONET: A neural net
for harmonizing chorales in the style of JS Bach”. In: NIPS. 1991, pp. 267–274.

[59] Geoffrey E Hinton and Terrence J Sejnowski. “Learning and releaming in Boltzmann
machines”. In: Parallel distributed processing: Explorations in the microstructure
of cognition 1 (1986), pp. 282–317.

[60] Geoffrey E Hinton et al. “Improving neural networks by preventing co-adaptation of
feature detectors”. In: arXiv preprint arXiv:1207.0580 (2012).

[61] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[62] Peter Hoffmann. “Towards an” automated art”: Algorithmic processes in Xenakis’
compositions”. In: Contemporary Music Review 21.2-3 (2002), pp. 121–131.

[63] Dominik Hörnel. “MELONET I: Neural nets for inventing baroque-style chorale vari-
ations”. In: NIPS. 1997, pp. 887–893.

[64] Brian Hyer. Tonality. URL: http://www.oxfordmusiconline.com/subscriber/article/
grove/music/28102 (visited on 08/10/2016).

http://dx.doi.org/10.1109/IJCNN.2005.1556215
http://dx.doi.org/10.1109/IJCNN.2005.1556215
http://kheafield.com/professional/edinburgh/estimate%5C_paper.pdf
http://kheafield.com/professional/edinburgh/estimate%5C_paper.pdf
http://www.oxfordmusiconline.com/subscriber/article/grove/music/28102
http://www.oxfordmusiconline.com/subscriber/article/grove/music/28102

References 65

[65] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[66] Oswald Jonas and John Rothgeb. Introduction to the theory of Heinrich Schenker:
the nature of the musical work of art. New York: Longman, 1982.

[67] Michael I Jordan. “Serial order: A parallel distributed processing approach”. In: Ad-
vances in psychology 121 (1997), pp. 471–495.

[68] Łukasz Kaiser and Ilya Sutskever. “Neural gpus learn algorithms”. In: arXiv preprint
arXiv:1511.08228 (2015).

[69] Barry Kernfeld. Meter. URL: www . oxfordmusiconline . com / subscriber / article _
citations/grove/music/J298700 (visited on 08/10/2016).

[70] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:
arXiv preprint arXiv:1412.6980 (2014).

[71] Jan Koutnik et al. “A Clockwork RNN”. In: Proceedings of The 31st International
Conference on Machine Learning 32 (2014), pp. 1863–1871. arXiv: arXiv :1402 .
3511v1. URL: http://jmlr.org/proceedings/papers/v32/koutnik14.html.

[72] Carol LKrumhansl.Cognitive foundations ofmusical pitch. OxfordUniversity Press,
2001.

[73] Bernice Laden and Douglas HKeefe. “The representation of pitch in a neural net model
of chord classification”. In: Computer Music Journal 13.4 (1989), pp. 12–26.

[74] Seppo Linnainmaa. “The representation of the cumulative rounding error of an algo-
rithm as a Taylor expansion of the local rounding errors”. In: Master’s Thesis (in
Finnish), Univ. Helsinki (1970), pp. 6–7.

[75] I-Ting Liu and Bhiksha Ramakrishnan. “Bach in 2014: Music Composition with Re-
current Neural Network”. In: arXiv:1412.3191 5 (2014), pp. 1–9. arXiv: 1412.3191.
URL: http://arxiv.org/abs/1412.3191.

[76] Xunying Liu et al. “Efficient lattice rescoring using recurrent neural network language
models”. In: 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE. 2014, pp. 4908–4912.

[77] Qi Lyu. “Polyphonic Music Modelling with LSTM-RTRBM”. In: Proceedings of the
23rd Annual ACM Conference on Multimedia Conference (2015), pp. 991–994.

[78] Tomáš Mikolov. “Statistical Language Models Based on Neural Networks”. PhD the-
sis. Brno, CZ, 2012, p. 129. URL: http://www.fit.vutbr.cz/research/view_pub.php?
id=10158.

[79] Tomas Mikolov et al. “Learning Longer Memory in Recurrent Neural Networks”. In:
Iclr (2015), pp. 1–9. arXiv: arXiv:1412.7753v1. URL: http: / /arxiv.org/pdf/1412.
7753v1.pdf.

[80] T Mikolov et al. “Recurrent Neural Network based Language Model”. In: Interspeech
September (2010), pp. 1045–1048.

[81] Michael C Mozer. “Neural network music composition by prediction: Exploring the
benefits of psychoacoustic constraints and multi-scale processing”. In: Connection
Science 6.2-3 (1994), pp. 247–280.

www.oxfordmusiconline.com/subscriber/article_citations/grove/music/J298700
www.oxfordmusiconline.com/subscriber/article_citations/grove/music/J298700
http://arxiv.org/abs/arXiv:1402.3511v1
http://arxiv.org/abs/arXiv:1402.3511v1
http://jmlr.org/proceedings/papers/v32/koutnik14.html
http://arxiv.org/abs/1412.3191
http://arxiv.org/abs/1412.3191
http://www.fit.vutbr.cz/research/view_pub.php?id=10158
http://www.fit.vutbr.cz/research/view_pub.php?id=10158
http://arxiv.org/abs/arXiv:1412.7753v1
http://arxiv.org/pdf/1412.7753v1.pdf
http://arxiv.org/pdf/1412.7753v1.pdf

66 References

[82] Dylan Jeremy Nagler. “SCHUBOT: Machine Learning Tools for the Automated Anal-
ysis of Schubert’s Lieder”. PhD thesis. 2014.

[83] Jean-Jacques Nattiez.Music and discourse: Toward a semiology of music. Princeton
University Press, 1990.

[84] Aran Nayebi andMatt Vitelli. “GRUV: AlgorithmicMusic Generation using Recurrent
Neural Networks”. In: CS224d: Deep Learning for Natural Language Processing
Final Projects (2015), pp. 1–6.

[85] Peter Norvig. Paradigms of artificial intelligence programming: case studies in
Common LISP. Morgan Kaufmann, 1992.

[86] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training
recurrent neural networks”. In: Proceedings of The 30th International Conference
on Machine Learning 2 (2012), pp. 1310–1318. ISSN: 1045-9227. DOI: 10.1109/72.
279181. arXiv: arXiv:1211.5063v2. URL: http://jmlr.org/proceedings/papers/v28/
pascanu13.pdf.

[87] Razvan Pascanu et al. “How to construct deep recurrent neural networks”. In: arXiv
preprint arXiv:1312.6026 (2013).

[88] Marcus Pearce, David Meredith, and Geraint Wiggins. “Motivations and methodolo-
gies for automation of the compositional process”. In: Musicae Scientiae 6.2 (2002),
pp. 119–147.

[89] Marcus Pearce and Geraint Wiggins. “Towards a framework for the evaluation of ma-
chine compositions”. In: Proceedings of the AISB’01 Symposium on Artificial In-
telligence and Creativity in the Arts and Sciences. Citeseer. 2001, pp. 22–32.

[90] Walter Piston. “Harmony. (Revised and expanded by Mark DeVoto)”. In: Londres:
Victor Gollancz LTD (1978).

[91] Donya Quick. “Kulitta: A Framework for AutomatedMusic Composition”. PhD thesis.
YALE UNIVERSITY, 2014.

[92] DonMichael Randel.TheHarvard concise dictionary of music andmusicians. Har-
vard University Press, 1999.

[93] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning represen-
tations by back-propagating errors”. In: Cognitive modeling 5.3 (1988), p. 1.

[94] Dominik Scherer, Andreas Müller, and Sven Behnke. “Evaluation of pooling opera-
tions in convolutional architectures for object recognition”. In: International Confer-
ence on Artificial Neural Networks. Springer. 2010, pp. 92–101.

[95] Jürgen Schmidhuber. “Learning complex, extended sequences using the principle of
history compression”. In: Neural Computation 4.2 (1992), pp. 234–242.

[96] Roger N Shepard. “Geometrical approximations to the structure of musical pitch.” In:
Psychological review 89.4 (1982), p. 305.

[97] Randall R Spangler, Rodney M Goodman, and Jim Hawkins. “Bach in a Box-Real-
Time Harmony”. In: (1998).

[98] Andreas Stolcke et al. “SRILM-an extensible language modeling toolkit.” In: Inter-
speech. Vol. 2002. 2002, p. 2002.

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://arxiv.org/abs/arXiv:1211.5063v2
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://jmlr.org/proceedings/papers/v28/pascanu13.pdf

References 67

[99] Bob L Sturm et al. “Music transcription modelling and composition using deep learn-
ing”. In: arXiv preprint arXiv:1604.08723 (2016).

[100] Bob Sturm, Joao Felipe Santos, and Iryna Korshunova. “Folk music style modelling by
recurrent neural networks with long short term memory units”. In: 16th International
Society for Music Information Retrieval Conference. 2015.

[101] Ilya Sutskever. “Training Recurrent Neural Networks - Ilia Sutskever - PhD thesis”. In:
(). URL: http://www.cs.utoronto.ca/%5C%7Eilya/pubs/ilya%5C_sutskever%5C_
phd%5C_thesis.pdf.

[102] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with
neural networks”. In: Advances in neural information processing systems. 2014,
pp. 3104–3112.

[103] Ernst Terhardt. “Pitch, consonance, and harmony”. In: The Journal of the Acoustical
Society of America 55.5 (1974), pp. 1061–1069. DOI: http://dx.doi.org/10.1121/1.
1914648. URL: http://scitation.aip.org/content/asa/journal/jasa/55/5/10.1121/1.
1914648.

[104] Peter Todd. “A sequential network design for musical applications”. In: Proceedings
of the 1988 connectionist models summer school. 1988, pp. 76–84.

[105] Peter M Todd. “A connectionist approach to algorithmic composition”. In: Computer
Music Journal 13.4 (1989), pp. 27–43.

[106] Petri Toiviainen. Symbolic AI versus Connectionism in Music Research. 2000.
[107] Chi Ping Tsang and Melanie Aitken. “Harmonizing Music as a Discipline in Contraint

Logic Programming”. In: Proceedings of the International Computer Music Con-
ference. INTERNATIONAL COMPUTER MUSIC ACCOCIATION. 1991, pp. 61–
61.

[108] Alan M Turing. “Computing machinery and intelligence”. In: Mind 59.236 (1950),
pp. 433–460.

[109] Eric Wanner. “The ATN and the sausage machine: Which one is baloney?” In: Cogni-
tion 8.2 (1980), pp. 209–225.

[110] John David White and William E Lake. Guidelines for college teaching of music
theory. Scarecrow Press, 2002.

[111] Ronald J Williams and Jing Peng. “An efficient gradient-based algorithm for on-line
training of recurrent network trajectories”. In:Neural computation 2.4 (1990), pp. 490–
501.

[112] Ronald J Williams and David Zipser. “A learning algorithm for continually running
fully recurrent neural networks”. In: Neural computation 1.2 (1989), pp. 270–280.

[113] Wojciech Zaremba. “An empirical exploration of recurrent network architectures”. In:
(2015).

[114] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent neural network reg-
ularization”. In: arXiv preprint arXiv:1409.2329 (2014).

[115] Matthew D Zeiler et al. “Deconvolutional networks”. In: Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 2528–2535.

http://www.cs.utoronto.ca/%5C%7Eilya/pubs/ilya%5C_sutskever%5C_phd%5C_thesis.pdf
http://www.cs.utoronto.ca/%5C%7Eilya/pubs/ilya%5C_sutskever%5C_phd%5C_thesis.pdf
http://dx.doi.org/http://dx.doi.org/10.1121/1.1914648
http://dx.doi.org/http://dx.doi.org/10.1121/1.1914648
http://scitation.aip.org/content/asa/journal/jasa/55/5/10.1121/1.1914648
http://scitation.aip.org/content/asa/journal/jasa/55/5/10.1121/1.1914648

A
Appendix A: A primer on Western music

theory

This appendix chapter serves as a primer on the music theory knowledge assumed throughout
the rest of our work. It synthesizes material originally presented in Franklin [44], Nagler [82],
Quick [91], and Freedman [45]. Readers with a strong music background may wish to skip
this section.

Music theory is a branch of musicology concerned with the study of the rules and practices
of music. While the general field includes study of acoustic qualities such as dynamics and
timbre, we restrict the scope of our research to modeling musical scores (e.g. fig. A.1) and ne-
glect issues related to articulation and performance (e.g. dynamics, accents, changes in tempo)
as well as synthesis/generation of the physical acoustic waveforms.

This is justified because the physical waveforms are more closely related to the skill of the
performers and instruments used and are likely to vary significantly across different perfor-
mances. Furthermore, articulations in the same musical piece may differ across transcriptions
and performers. Despite these variations, a piece of music is still recognizable from just the
notes, suggesting that notes are the defining element for a piece of music.

70 Appendix A: A primer on Western music theory

�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�

��

� ��
�

�

�
�

�
�

��

�
�

�

�

�

� �

�
�
�

�
�
�

�
�
�� �� �

��

	 ��� �

�	 �� �
��
�

�

��

�

�
�

�

��

�

�

�

�
�

�

�
�

���

Music engraving by LilyPond 2.18.2—www.lilypond.org

Fig. A.1 Sheet music representation of the first four bars of BWV 133.6

Fig. A.2 Terhardt’s visual analogy for pitch. Similar to how the viewer of this figure may
percieve contours not present, pitch describes subjective information received by the listener
even when physical frequencies are absent.

A.1 Notes: the basic building blocks
A note is the most fundamental element of music score and represents a sound played at a
certain pitch for a certain duration. In sheet music such as fig. A.1, the notes are denoted by
the filled/unfilled black heads with protruding stems. As a can be viewed as a collection of
notes over time, notes are the fundamental building blocks for musical scores.

A.1.1 Pitch
Though pitch is closely related to physical frequency of vibration of a waveform (as measured
in Hertz), pitch is a perceptual property whose semantic meaning is derived from a listener’s
perception. This distinction has been scrutinized by Terhardt [103], whose visual analogy in
fig. A.2 illustrates how a pitch can be heard even if its percieved frequency is absent just as one
may see the word “PITCH” despite being presented with only a suggestive shadow.

Despite its psychoacoustic nature, it is nevertheless useful to objectively quantify pitch as
a frequency. To do so, we first need some definitions. The difference between two frequencies

A.1 Notes: the basic building blocks 71

C D E F G A B

C#
D♭

D#
E♭

F#
G♭

G#
A♭

A#
B♭

C

...

Fig. A.3 Illustration of an octave in the 12-note chromatic scale on a piano keyboard.

is called an interval and an octave is an interval corresponding to the distance between a
frequency 𝑓 ∈ ℝ+ and its doubling 2𝑓 or halving 𝑓/2. Two frequencies spaced exactly an
octave apart are perceived to be similar, suggesting that music is percieved on a logarithmic
scale.

Most Western music is based on the twelve-note chromatic scale, which divides an octave
into twelve distinct frequencies. The tuning system employed dictates the precise intervals
between subdivisions, with equal temperament tuning (all subdivisions are equally spaced
on a logarithmic scale) the most widely used in common practice music [31]. Under twelve-
note equal temperament tuning, the distance between two consecutive subdivisions (1/12 of
an octave) is called a semitone (British) or half-step (North American) and two semitones
constitutes a tone or whole-step.

When discussing music, note nameswhich enable succinct specification of a musical pitch
are often employed. In scientific pitch notation, pitch classeswhich represent a pitch modulo
the octave are specified by a letter ranging from 𝐴 to 𝐺 and optionally a single accidental.
Pitch classes without accidentals are called natural and correspond to the white keys on a
piano. Two accidentals are possible: sharps (#) raise the natural pitch class up one semitone
and flats (♭) lower by one semitone. fig. A.3 illustrates how these pitch classes map to keys on
a piano.

Since pitch classes represent equivalence class of frequencies spaced an integral number
of octaves apart, unambiguously specifying a pitch requires not only a pitch class but also an
octave. In scientific pitch notation, this is accomplished by appending an octave number to a
pitch class letter (see fig. A.4). Together, a pitch class and octave number uniquely specify the
notation for a pitch. On sheet music, the pitch of a note is indicated by its vertical position with
respect to the stave (the five horizontal lines and four spaces).

72 Appendix A: A primer on Western music theory

Fig. A.4 Scientific pitch notation and sheet music notation of 𝐶 notes at ten different octaves.

Fig. A.5 Comparison of various note durations [21]

A.1.2 Duration
In addition to pitch, a note also possesses a duration. The duration of a note indicates how
long it is to be played and is measured in fractions of a whole note (American) or semi-
breve (British). Perhaps the most common duration is a quarter-note (American) or crotchet
(British). Other note durations are also possible and the most common along with their nota-
tion in sheet music are enumerated in fig. A.5. The relationship between durations and physical
time intervals is given by the tempo, which is usually denoted near the start of the piece in beats
per minute.

A.2 Tonality in common practice music 73

A.1.3 Offset, Measures, and Meter
The final property a note possess is an offset indicating the time at which a note is articulated.
The offset is measured with respect to a fixed reference point in time, such as the start of a
score.

Another common reference point for measuring offsets is with respect to the preceding bar.
Bars are denoted by vertical lines through the stave in sheet music and are used to subdivide
a piece into smaller temporal units called measures. Except for the notes preceeding the first
bar (i.e. the anacrusis), most measures within a score all have the same duration.

In fig. A.1 on page 70, the crotchet preceding the first bar provides an example of an anacru-
sis. Notice that all other measures in the score are four crotchets in duration. In addition,
observe that the offsets of notes within a measure is highly repetitive. There is always a note
articulated on the first crotchet of a measure and articulations occuring between crotchets (i.e.
quavers) are only present the last two crotchets of a measure.

This repetition of the same pattern of offsets across multiple measure helps establish a
periodic pattern of strong and weak beats, a concept known as meter [69]. Meter is implied
in Western music, where bars establish perodic measures of equal length [56]. The meter of a
score provides information about musical structure which can be used to predict chord changes
and repepetition boundaries [22].

A.1.4 Piano roll notation
Figure A.6 shows the the same score from fig. A.1 on page 70 in piano roll notation, a format
which is convenient for visualization purposes. The horizontal and vertical axes represent time
and pitch respectively. A solid horizontal bar signifies the presence of a note at the correspond-
ing pitch and offset and the length of the bar corresponds to the note’s duration.

A.2 Tonality in common practice music
Tonality refers to “the orientation of melodies and harmonies towards a referential (or tonic)
pitch class“ [64]. One way to characterize tonality is with scales, which defines a subset of
pitch classes that are “in key” with respect to the tonic. Table A.1 shows the pitch intervals
between adjacent pitch classes within two important scales: the major and the minor. The
choice of tonic and scale is collectively referred to as the key.

74 Appendix A: A primer on Western music theory

0 1 2 3 4
Measure number

A2
B2
C♯3
D3
E3
F♯3
G3
A3
A♯3
B3
C♯4
D4
E4
F♯4
G4
G♯4
A4
A♯4
B4
C♯5
D5

Pi
tch

0 2 4 6 8 10 12 14 16

Fig. A.6 Piano roll notation of the music in fig. A.1

Table A.1 Pitch intervals for the two most important keys [45]. The pitches in a scale can be
found by starting at the tonic and successively offsetting by the given pitch intervals.

Key Pitch Intervals (semitones)
Major (Ionian, I) +2, +2, +1, +2, +2, +2
Minor (Aeolian, VI) +2, +1, +2, +2, +1, +2

A.2.1 Polyphony, chords, and chord progressions
Whereasmonophonicmusic is characterized by the presence of a single part sounding at most
one note at any given time, polyphonic music contains multiple parts potentially sounding
multiple pitches at the same time. Just as notes form the basis of monophonic music, chords
are the fundamental building blocks for polyphonic music.

A.2.2 Chords: basic units for representing simultaneously sounding notes
A chord is a collection of three or more pitches all sounding simultaneously [92]. In Western
classical music, they typically consist of a root note whose pitch class forms a base from
which successive notes are built upon. The intervals between the pitch classes in a chord are

A.2 Tonality in common practice music 75

Table A.2 Common chord qualities and their corresponding intervals [45]

Chord quality Intervals from root pitch class
Major +4, +7
Major 6th +4, +7, +8
Major 7th +4, +7, +11
Minor +3, +7
Minor 6th +3, +7, +9
Minor 7th +3, +7, +10
Dominant 7th +4, +7, +10
Augmented +4, +8
Diminished +3, +6
Diminished 7th +3, +6, +9
Half-diminished 7th +3, +6, +10

commonly labeled using qualities, which are invariant across octaves. Different realizations
of the same chord (e.g. octave choices for each pitch class) are called voicings.

table A.2 lists some common chord qualities and their corresponding intervals from the
root note. Chord names are given as a root pitch class followed by a quality, for example: 𝐶
major, 𝐴 minor, or 𝐺 half-diminished 7th.

The lowest note in a chord is called the bass note and is oftentimes the root note. However,
alternative voicings called inversions can place the root note on a different octave and cause
the bass and root notes to differ.

A.2.3 Chord progressions, phrases, and cadences
Sequences of chords are called chord progressions, which are oftentimes grouped with adja-
cent progressions into coherent units called phrases. Many psychoacoustic phenomena such
as stability, mood, and expectation can be attributed choice of chord progressions and phrase
structure. For example, chord progressions can be used to createmodulationswhich transition
the music into a different key.

Analyzing chord progresssions involves a degree of subjectivity as chords can be overlap-
ping and contain extraneous notes or involve uncommon chord qualities. A common method
for analyzing chord progressions is Roman numeral analysis, where I is used for denoting
the tonic pitch class, successive Roman numerals for successive pitch classes in the key, and
capitalization is used to distinguish major and minor qualities. For example, the chord pro-
gression 𝐶 major – 𝐴 minor – 𝐷 major 7th – 𝐺 major in the 𝐶 major key would be represented
in Roman numerals as I – ii – IImaj7 – V.

76 Appendix A: A primer on Western music theory

A common use case for Roman numeral analysis is identifying and classifying chord pro-
gressions called harmonic cadences, which are commonly used for effects such as eliciting a
sense of incompleteness [66] or establishing a sense of conclusion at the end of phrases [92].
The most important cadences include:

Perfect cadence : V – I. The perfect cadence is described by Randel [92] as “a microcosm
of the tonal system, and is the most direct means of establishing a pitch as tonic. It is
virtually obligatory as the final structural cadence of a tonal work”

Imperfect cadence : Any cadence ending on V, including I–V, ii–V, IV–V, V–V, and vi – V.
The imperfect cadence sounds incomplete and is considered a weak cadence which call
for continuation [66]

Interrupted cadepnce : V–vi. Also considered a weak cadence which invokes a “hanging”
sensation prompting continuation [90].

A.2.4 Transposition invariance
Notice that the discussion thus far has remained ambiguous on the choice of tonic. This is
intentional: most of the concepts discussed do not depend on the choice of tonic. When dis-
cussing tonality, the scale was defined using intervals relative to a choice of tonic. Similarly,
Roman numeral analysis of chord progressions and cadences is also conducted relative to a
tonic. Neither the scale nor the Roman numeral analysis is affected when a score is transposed
by an arbitrary pitch interval.

The transposition invariance of chord progressions and keys is an important property of
music. It enables us to offset an entire score by an arbitrary pitch interval without affecting
many important psychoacoustic qualities.

B
Appendix B: An introduction to neural

networks

This appendix chapter provides background at a more elementary level than section 2.1 on
page 5. Its goal is to sufficiently educate readers unfamiliar with recurrent neural networks
such that the remainder of our work can be understood.

B.1 Neurons: the basic computation unit
Neurons are the basic abstraction which are combined together to form neural networks. A
neuron is a parametric model of a function 𝑓 ∶ ℝ𝐷 → ℝ from its 𝐷-dimensional input 𝑥 to
its output 𝑦. Our neurons will be defined as

𝑓(𝑥) ≔ 𝜎(⟨𝑤,𝑥⟩) (B.1)

which can be viewed as an inner product with weights 𝑤 to produce an activation 𝑧 ≔
⟨𝑤,𝑥⟩ ∈ ℝ which is then squashed to a bounded domain by a non-linear activation func-
tion 𝜎 ∶ ℝ → [𝐿, 𝑈]. This is visually depicted in fig. B.1, which also makes apparent the
interpretation of weight 𝑤𝑖 as the sensitivity of the output 𝑦 to the input 𝑥𝑖.

78 Appendix B: An introduction to neural networks

+

𝜎(⋅)

𝑥1 𝑥2 ⋯ 𝑥𝐷

𝑤2𝑤1 𝑤𝐷

𝑧 = ∑𝐷
𝑖=1 𝑤𝑖𝑥𝑖

𝑦 = 𝜎(𝑧)

Fig. B.1 A single neuron first computes an activation 𝑧 and then passes it through an activation
function 𝜎(⋅)

B.2 Feedforward neural networks
Multiple neurons may share inputs and have their outputs concatenated together to form a layer
modelling a multivariate functions 𝑓 ∶ ℝ𝐷in → ℝ𝐷out . Multiple layers can then be composed
together to form a feedforwd neural network.

Although a single hidden layer is theoretically sufficient for a universal function approx-
imator [29], the number of hidden units to guarantee reported theoretical bounds are usually
infeasibly large. Instead, recent work in deep learning has shown that deep models which
contain many hidden layers can achieve strong performance across a variety of tasks [10].

The improved modeling capacity gained by composing multiple layers is due to the com-
position of multiple non-linear activation functions. In fact, it is easy to show that removing
activation functions would make a deep network equivalent to a single matrix transform: let
𝑊 𝑙,𝑙+1 denote the weights between layers 𝑙 and 𝑙 + 1. The original neural network computes
the function

𝜎 (𝑊 𝐿,𝐿−1𝜎 (𝑊 𝐿−1,𝐿−2 ⋯ 𝜎 (𝑊 2,1𝑥) ⋯)) (B.2)

After removing the activation functions 𝜎, we are left with

𝑊 𝐿,𝐿−1𝑊 𝐿−1,𝐿−2 ⋯𝑊 2,1𝑥 = 𝑥 = �̃� 𝑥 (B.3)

B.3 Recurrent neural networks 79

Input Layer

Hidden Layers

Output Layer

Fig. B.2 Graph depiction of a feedforward neural network with 2 hidden layers

where �̃� = (∏𝐿−1
𝑖=1 𝑊 𝑖,𝑖+1) is a matrix transform computing the same function as the neural

network with activation functions removed.

B.3 Recurrent neural networks
While feedforward neural networks provide a flexible model for approximating arbitrary func-
tions, they require a fixed-dimension input 𝑥 and hence cannot be directly applied to sequential
data 𝑥 = (𝑥𝑡)𝑇

𝑡=1 where 𝑇 may vary.
A naive method for extending feedforward networks would be to independently apply a

feedforward network to compute 𝑦𝑡 = 𝑓(𝑥𝑡𝜃) at each timestep 1 ≤ 𝑡 ≤ 𝑇 . However, this
approach is only correct when each output 𝑦𝑡 depends only on the input at the current time 𝑥𝑡
and is independent of all prior inputs {𝑥𝑘}𝑘<𝑡. This assumption is false in musical data: the
current musical note usually is highly dependent on the sequence of notes leading up to it.

This shortcoming motivates recurrent neural networks (RNNs), which generalize feed-
forward networks by introducing time-delayed recurrent connections between hidden layers
(Elman networks [40]) or from the output layers to the hidden layers (Jordan networks [67]).
Mathematically, a linear Elman-type RNN is a discrete time dynamical system commonly pa-
rameterized as:

ℎ𝑡 = 𝑊 𝑥ℎ𝜎𝑥ℎ (𝑥𝑡) + 𝑊 ℎℎ𝜎ℎℎ (ℎ𝑡−1)
𝑦𝑡 = 𝑊 ℎ𝑦𝜎ℎ𝑦 (ℎ𝑡)}

Linear Elman-Type RNN Dynamics (B.4)

(B.5)

80 Appendix B: An introduction to neural networks

Input Layer

Hidden Layers

Output Layer

Fig. B.3 Graph representation of an Elman-type RNN.

where 𝜎⋅⋅(⋅) are activation functions acting element-wise and 𝜃 = {𝑊 𝑥ℎ,𝑊 ℎℎ,𝑊 ℎ𝑦} are the
learned parameters. fig. B.3 provides a graphical illustration of such a network. Notice that
apart from the edges between hidden nodes, the network is identical to a regular feedforward
network (fig. B.2).

To apply the RNN over an input sequence 𝑥, the activations of the hidden states are first
initialized to an initial value ℎ ∈ ℝ𝐷ℎ . Next, for each timestep 𝑡 the hidden layer activations
are computed using the current input 𝑥𝑡 and the previous hidden state activations ℎ𝑡−1. This
motivates an alternative perspective onRNNs as a template consisting of a feedforward network
with inputs {𝑥𝑡,ℎ𝑡−1} (see fig. 2.1 on page 7) replicated across time 𝑡.

C
Appendix C: Additional Proofs, Figures, and

Tables

This appendix chapter contains additional proofs, figures, and tables omitted from the body
of this work for sake of clarity. It is intended for readers who wish to examine our claims in
greater detail.

C.1 Sufficient conditions for vanishing gradients
Following Pascanu, Mikolov, and Bengio [86], let ‖ ⋅ ‖ be any submultiplicative matrix norm
(e.g. Frobenius, spectral, nuclear, Shatten 𝑝-norms). Without loss of generality, we will use
the operator norm defined as

‖𝐴‖ = sup
𝑥∈ℝ𝑛;𝑥≠0

|𝐴𝑥|
|𝑥| (C.1)

where | ⋅ | is the standard Euclidian norm.
Applying the definition of submultiplicativity to the factors of the product in eq. (2.4), we

have that for any 𝑘

‖
𝜕ℎ𝑘

𝜕ℎ𝑘−1 ‖ ≤ ‖𝑊 ⊺
ℎℎ‖‖ diag (𝜎′

ℎℎ(ℎ𝑘−1)) ‖ ≤ 𝛾𝑊 𝛾𝜎 (C.2)

82 Appendix C: Additional Proofs, Figures, and Tables

where we have defined 𝛾𝑊 = ‖𝑊 ⊺
ℎℎ‖ and

𝛾𝜎 ≔ sup
ℎ∈ℝ𝑛

‖ diag (𝜎′
ℎℎ(ℎ)) ‖ (C.3)

= sup
ℎ∈ℝ𝑛

max
𝑖

𝜎′
ℎℎ(ℎ)𝑖 Operator norm of diag (C.4)

= sup
𝑥∈ℝ

𝜎′
ℎℎ(𝑥) 𝜎ℎℎ acts elementwise (C.5)

Substituting back into eq. (2.4), we find that

‖
𝜕ℎ𝑡
𝜕ℎ𝑘 ‖ =

‖ ∏
𝑡≥𝑖>𝑘

𝜕ℎ𝑖
𝜕ℎ𝑖−1 ‖

≤ ∏
𝑡≥𝑖>𝑘 ‖

𝜕ℎ𝑖
𝜕ℎ𝑖−1 ‖ ≤ (𝛾𝑊 𝛾𝜎)𝑡−𝑘 (C.6)

Hence, we see that a sufficient condition for vanishing gradients is for 𝛾𝑊 𝛾𝜎 < 1, in which
case ‖

𝜕ℎ𝑡
𝜕ℎ𝑘 ‖ → 0 exponentially for long timespans 𝑡 ≫ 𝑘.

If 𝛾𝜎 is bounded, sufficient conditions for vanishing gradients to occur may be written as

𝛾𝑊 < 1
𝛾𝜎

(C.7)

This is true for commonly used activation functions (e.g. 𝛾𝜎 = 1 for 𝜎ℎℎ = tanh, 𝛾𝜎 = 0.25 for
𝜎ℎℎ = sigmoid).

The converse of the proof implies that ‖𝑊 ⊺
ℎℎ‖ ≥ 1

𝛾𝜎
are necessary conditions for 𝛾𝑊 𝛾𝜎 > 1

and exploding gradients to occur.

C.2 Quantifying the effects of preprocessing
Related discussion is in section 4.1.1 on page 22.

C.2 Quantifying the effects of preprocessing 83

C2
C#

2D
2E

-2
E2

F2
F#

2G
2A

-2
A2

B-
2B

2C
3C

#3
D3

E-
3E

3F
3F

#3
G3

G#
3A

3B
-3
B3

C4
C#

4D
4E

-4
E4

F4
F#

4G
4G

#4
A4

B-
4B

4 C
5C

#5
D5

E-
5E

5F
5F

#5
G5

A-
5A

5

Pi
tch

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Count

Pi
tch

us
ag

e(
or
ig
in
al)

G1
A1

B1
C2

C#
2D

2D
#2

E2
F2

F#
2G

2G
#2
A2

B-
2B

2C
3C

#3
D3

D#
3E

3F
3F

#3
G3

G#
3A

3B
-3
B3

C4
C#

4D
4D

#4
E4

F4
F#

4G
4G

#4
A4

B-
4B

4 C
5C

#5
D5

D#
5E

5F
5F

#5
G5

G#
5A

5B
-5
B5

C6
D6

Pi
tch

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

Count

Pi
tch

us
ag

e(
tra

ns
po

se
d)

Fi
g.

C.
1D

ist
rib

ut
io
no

fp
itc

he
su

se
do

ve
rB

ac
hc

ho
ra
les

co
rp
us

.T
ra
ns

po
sit

io
nh

as
re
su

lte
di

na
no

ve
ra
ll
br
oa

de
rr

an
ge

of
pi
tch

es
an

d
in
cr
ea

se
d
th
ec

ou
nt
so

fp
itc

he
sw

hi
ch

ar
ei

n
ke

y.

84 Appendix C: Additional Proofs, Figures, and Tables

C C# D E- E F F# G G# A B- B
Pitch

0
2000
4000
6000
8000

10000
12000
14000
16000

Co
un

t

Pitch class usage (original)

C C# D D# E F F# G G# A B- B
Pitch

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Co
un

t

Pitch class usage (transposed)

Fig. C.2 Distribution of pitch classes over Bach chorales corpus. Transposition has increased
the counts for pitch classes within the C-major / A-minor scales.

0 1 2 3 4
Offset from start of measure (crotchets)

0
5000

10000
15000
20000
25000

Co
un

t

Note occurence positions (original)

0 1 2 3 4
Offset from start of measure (crotchets)

0
5000

10000
15000
20000
25000

Co
un

t
Note occurence positions (quantized)

Fig. C.3 Meter is minimally affected by quantization due to the high resolution used for time
quantization.

C.3 Discovering neurons specific to musical concepts
Related discussion is in section 5.1.3 on page 40.

C.4 Identifying and verifying local optimality of the overall
best model

Related discussion is in section 4.2.5 on page 33.

Fig. C.5 Results of grid search (see Section 4.2.5) over LSTM sequencemodel hyperparameters

C.4 Identifying and verifying local optimality of the overall best model 85

0 200 400 600 800 1000 1200

0
5

10
15
20
25
30

V
ec

to
r

em
b

ed
d

in
gs

−2.4
−1.6
−0.8
0.0
0.8
1.6
2.4
3.2

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

music21 Roman numeral analysis

0 200 400 600 800 1000 1200

0

50

100

150

200

250L
ay

er
1

L
S

T
M

h
id

d
en

st
a
te

−4

−3

−2

−1

0

1

2

3

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 200 400 600 800 1000 1200

0

50

100

150

200

250L
ay

er
2

L
S

T
M

h
id

d
en

st
a
te

−15

−12

−9

−6

−3

0

3

6

9

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 200 400 600 800 1000 1200

0

50

100

150

200

250L
ay

er
3

L
S

T
M

h
id

d
en

st
a
te

−15

−10

−5

0

5

10

15

20

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 200 400 600 800 1000 1200

0
20
40
60
80

100

F
u

ll
y
-c

on
n

ec
te

d
o
u

tp
u

ts

−10
−5
0
5
10
15
20
25

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

0 200 400 600 800 1000 1200

tokens processed

0
20
40
60
80

100

N
ex

t-
to

ke
n

p
re

d
ic

ti
o
n

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

I V I IV I VvViii I I vi vii vivivi v vi viviivi I V I IV I VvViii I I vi vii vivivi v vi viviivi v viV v I iiivivi v v V V v vi v I I viviV V I iiIVVVViiivi I IVVvi i I V I

Fig. C.4 Neuron activations over time as the encoded stimulus is processed token-by-token

86 Appendix C: Additional Proofs, Figures, and Tables

num_layers rnn_size seq_length wordvec train_metric val_metric

3.0 256.0 128.0 32.0 0.323781 0.477027
2.0 256.0 128.0 32.0 0.323668 0.479322
2.0 256.0 128.0 64.0 0.303158 0.482216
3.0 256.0 256.0 64.0 0.320361 0.484231
3.0 256.0 128.0 32.0 0.383811 0.484667
3.0 256.0 128.0 16.0 0.342955 0.484791
2.0 256.0 256.0 64.0 0.373641 0.485353
3.0 256.0 128.0 64.0 0.305290 0.486244
2.0 256.0 128.0 32.0 0.275125 0.486305
2.0 256.0 256.0 32.0 0.352257 0.486755
4.0 256.0 128.0 32.0 0.333133 0.487135
2.0 256.0 256.0 32.0 0.307188 0.487868
2.0 256.0 256.0 32.0 0.400955 0.489320
3.0 256.0 256.0 64.0 0.381868 0.489810
2.0 256.0 256.0 64.0 0.333356 0.491396
2.0 256.0 256.0 64.0 0.284248 0.491593
3.0 128.0 128.0 32.0 0.365171 0.492478
3.0 256.0 128.0 32.0 0.264723 0.492849
3.0 384.0 128.0 32.0 0.228556 0.495991
3.0 256.0 128.0 64.0 0.248987 0.496190
3.0 256.0 128.0 32.0 0.445840 0.498205
3.0 256.0 256.0 32.0 0.273567 0.499422
2.0 256.0 128.0 64.0 0.256022 0.500500
3.0 256.0 256.0 32.0 0.338776 0.501711
2.0 128.0 128.0 32.0 0.384075 0.501840
3.0 128.0 128.0 64.0 0.417780 0.501919
2.0 256.0 128.0 32.0 0.219939 0.502503
3.0 128.0 128.0 64.0 0.361381 0.503206
3.0 128.0 128.0 32.0 0.431771 0.503590
3.0 256.0 64.0 64.0 0.263001 0.503945
3.0 256.0 384.0 64.0 0.419091 0.504249
3.0 256.0 256.0 32.0 0.393463 0.506486
2.0 128.0 128.0 64.0 0.364640 0.506923

Continued on next page

C.4 Identifying and verifying local optimality of the overall best model 87

num_layers rnn_size seq_length wordvec train_metric val_metric

2.0 128.0 128.0 64.0 0.422178 0.507268
3.0 256.0 256.0 64.0 0.261563 0.507479
3.0 256.0 64.0 32.0 0.278916 0.507673
2.0 128.0 128.0 32.0 0.434552 0.508460
3.0 256.0 384.0 32.0 0.439684 0.514804
1.0 256.0 128.0 64.0 0.334873 0.517134
2.0 128.0 128.0 64.0 0.465061 0.520224
2.0 256.0 128.0 64.0 0.195905 0.521330
1.0 256.0 256.0 64.0 0.368281 0.522424
2.0 128.0 128.0 32.0 0.485346 0.522955
2.0 128.0 256.0 64.0 0.378280 0.525397
3.0 512.0 128.0 32.0 0.168366 0.525644
1.0 256.0 256.0 64.0 0.417803 0.525980
3.0 128.0 128.0 64.0 0.480340 0.526121
3.0 128.0 128.0 32.0 0.491876 0.527008
3.0 256.0 128.0 32.0 0.194120 0.528000
2.0 128.0 128.0 64.0 0.296537 0.528261
2.0 128.0 128.0 32.0 0.316390 0.529308
3.0 128.0 256.0 64.0 0.435649 0.529458
1.0 256.0 128.0 32.0 0.375717 0.529638
2.0 128.0 256.0 64.0 0.440450 0.529948
1.0 256.0 256.0 64.0 0.389651 0.531063
2.0 128.0 256.0 128.0 0.362561 0.533559
2.0 128.0 256.0 32.0 0.398919 0.533672
3.0 128.0 256.0 32.0 0.452009 0.536955
1.0 256.0 128.0 32.0 0.346140 0.538510
2.0 128.0 128.0 128.0 0.273516 0.539359
1.0 256.0 128.0 64.0 0.310597 0.539599
3.0 128.0 128.0 32.0 0.265842 0.539827
1.0 256.0 128.0 64.0 0.274568 0.541263
3.0 128.0 256.0 64.0 0.500697 0.544048
1.0 256.0 128.0 32.0 0.316189 0.545363
1.0 256.0 128.0 32.0 0.285714 0.546995

Continued on next page

88 Appendix C: Additional Proofs, Figures, and Tables

num_layers rnn_size seq_length wordvec train_metric val_metric

3.0 128.0 128.0 64.0 0.247192 0.549826
1.0 128.0 128.0 64.0 0.458142 0.550102
1.0 128.0 128.0 128.0 0.360038 0.550509
2.0 128.0 256.0 32.0 0.465110 0.550995
1.0 256.0 256.0 32.0 0.444180 0.551894
3.0 256.0 128.0 64.0 0.184959 0.552200
2.0 128.0 256.0 64.0 0.490587 0.552217
2.0 128.0 256.0 32.0 0.514900 0.553092
1.0 128.0 128.0 64.0 0.487574 0.553498
1.0 256.0 256.0 32.0 0.471938 0.553586
1.0 128.0 128.0 64.0 0.384282 0.554990
1.0 128.0 128.0 64.0 0.425469 0.555312
1.0 256.0 256.0 32.0 0.411686 0.555955
1.0 256.0 128.0 64.0 0.238860 0.556672
3.0 64.0 128.0 64.0 0.420250 0.559336
3.0 64.0 64.0 128.0 0.345705 0.559549
3.0 128.0 128.0 128.0 0.238071 0.562603
2.0 256.0 128.0 32.0 0.143647 0.563866
1.0 128.0 128.0 32.0 0.489160 0.564304
3.0 128.0 256.0 32.0 0.521478 0.566153
2.0 128.0 128.0 64.0 0.584950 0.567093
2.0 64.0 128.0 64.0 0.443393 0.567754
2.0 128.0 256.0 64.0 0.549169 0.568419
1.0 128.0 64.0 32.0 0.359041 0.569011
3.0 128.0 256.0 64.0 0.573862 0.570873
1.0 128.0 128.0 32.0 0.525982 0.571859
3.0 64.0 128.0 128.0 0.408074 0.572306
1.0 128.0 128.0 32.0 0.467434 0.572480
1.0 128.0 128.0 32.0 0.417764 0.573797
2.0 64.0 64.0 32.0 0.413944 0.573993
3.0 64.0 64.0 64.0 0.355615 0.574236
1.0 256.0 128.0 128.0 0.204964 0.574585
1.0 128.0 64.0 64.0 0.328927 0.575464

Continued on next page

C.4 Identifying and verifying local optimality of the overall best model 89

num_layers rnn_size seq_length wordvec train_metric val_metric

2.0 64.0 64.0 64.0 0.390597 0.575592
2.0 64.0 128.0 128.0 0.424735 0.575868
2.0 64.0 32.0 32.0 0.399389 0.577974
2.0 64.0 64.0 128.0 0.372478 0.578856
2.0 128.0 64.0 32.0 0.240288 0.580802
3.0 64.0 64.0 32.0 0.375478 0.582072
1.0 128.0 64.0 128.0 0.304245 0.582897
3.0 64.0 128.0 32.0 0.430421 0.582991
3.0 128.0 256.0 32.0 0.590133 0.585245
3.0 64.0 32.0 32.0 0.348150 0.585800
2.0 64.0 32.0 64.0 0.387047 0.589173
1.0 128.0 256.0 64.0 0.501138 0.593823
3.0 64.0 32.0 128.0 0.339394 0.594401
1.0 128.0 32.0 32.0 0.348193 0.595001
2.0 64.0 128.0 32.0 0.470837 0.597005
3.0 64.0 32.0 64.0 0.344404 0.597406
2.0 128.0 64.0 64.0 0.224014 0.597418
1.0 64.0 32.0 64.0 0.462827 0.597437
1.0 64.0 32.0 32.0 0.500014 0.598521
2.0 64.0 32.0 128.0 0.376624 0.600570
1.0 64.0 32.0 128.0 0.453646 0.604043
1.0 128.0 256.0 64.0 0.539087 0.604710
2.0 256.0 128.0 64.0 0.122328 0.606237
1.0 64.0 128.0 128.0 0.489255 0.607122
1.0 128.0 32.0 64.0 0.319029 0.609441
1.0 128.0 256.0 64.0 0.566182 0.610409
1.0 128.0 32.0 128.0 0.294204 0.613838
1.0 64.0 64.0 128.0 0.436633 0.615036
1.0 64.0 64.0 64.0 0.461935 0.616265
2.0 128.0 64.0 128.0 0.206896 0.620845
1.0 128.0 256.0 32.0 0.550056 0.627652
2.0 256.0 128.0 128.0 0.106181 0.631364
3.0 128.0 64.0 32.0 0.185779 0.633145

Continued on next page

90 Appendix C: Additional Proofs, Figures, and Tables

num_layers rnn_size seq_length wordvec train_metric val_metric

1.0 128.0 256.0 32.0 0.591930 0.638022
1.0 256.0 64.0 32.0 0.200897 0.640652
1.0 64.0 64.0 32.0 0.487779 0.643943
1.0 128.0 256.0 32.0 0.621720 0.647467
2.0 128.0 32.0 32.0 0.209044 0.647553
3.0 256.0 128.0 32.0 0.100153 0.650138
1.0 64.0 128.0 64.0 0.515733 0.653191
1.0 256.0 64.0 64.0 0.171567 0.657626
3.0 256.0 128.0 64.0 0.087426 0.660995
3.0 128.0 64.0 128.0 0.169560 0.663409
3.0 128.0 64.0 64.0 0.172871 0.670402
1.0 64.0 128.0 32.0 0.561724 0.670482
1.0 256.0 64.0 128.0 0.149129 0.672432
2.0 128.0 32.0 64.0 0.193615 0.688310
2.0 128.0 128.0 64.0 0.802259 0.696580
2.0 128.0 256.0 32.0 0.907374 0.701893
3.0 256.0 128.0 128.0 0.076598 0.711632
2.0 256.0 64.0 32.0 0.081134 0.716840
2.0 128.0 32.0 128.0 0.173684 0.727354
2.0 256.0 64.0 64.0 0.073675 0.742250
1.0 256.0 32.0 32.0 0.161496 0.743529
3.0 128.0 32.0 32.0 0.146775 0.752404
1.0 256.0 32.0 64.0 0.138145 0.755407
1.0 256.0 32.0 128.0 0.125931 0.757801
3.0 128.0 32.0 64.0 0.134530 0.770094
2.0 256.0 64.0 128.0 0.063084 0.797383
3.0 128.0 32.0 128.0 0.129410 0.801131
3.0 256.0 64.0 64.0 0.048852 0.823713
3.0 256.0 64.0 32.0 0.052363 0.848516
2.0 256.0 32.0 32.0 0.058634 0.874037
3.0 256.0 64.0 128.0 0.044448 0.876398
2.0 256.0 32.0 128.0 0.049791 0.888397
2.0 256.0 32.0 64.0 0.050012 0.898488

Continued on next page

C.4 Identifying and verifying local optimality of the overall best model 91

num_layers rnn_size seq_length wordvec train_metric val_metric

3.0 256.0 32.0 32.0 0.037417 0.960396
3.0 256.0 32.0 64.0 0.034403 0.988554
3.0 256.0 32.0 128.0 0.036275 0.990457

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tr
ain

in
g
lo
ss

rnn_size=128.0, num_layers=1.0
rnn_size=256.0, num_layers=1.0
rnn_size=128.0, num_layers=2.0
rnn_size=256.0, num_layers=2.0
rnn_size=128.0, num_layers=3.0
rnn_size=256.0, num_layers=3.0
rnn_size=256.0, num_layers=4.0

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Va
lid

ati
on

lo
ss

rnn_size=128.0, num_layers=1.0
rnn_size=256.0, num_layers=1.0
rnn_size=128.0, num_layers=2.0
rnn_size=256.0, num_layers=2.0
rnn_size=128.0, num_layers=3.0
rnn_size=256.0, num_layers=3.0
rnn_size=256.0, num_layers=4.0

Training curves for various hidden layer architectures

Fig. C.6 rnn_size=256 and num_layers=3 yields lowest validation loss.

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tr
ain

in
g
lo
ss

num_layers=1.0
num_layers=2.0
num_layers=3.0
num_layers=4.0

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

Va
lid

ati
on

lo
ss

num_layers=1.0
num_layers=2.0
num_layers=3.0
num_layers=4.0

Increasing num_layers does not improve performance

Fig. C.7 Validation loss improves initially with increasing network depth but deteriorates after
> 3 layers.

92 Appendix C: Additional Proofs, Figures, and Tables

0 10 20 30 40 50
Epoch

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Tr
ain

in
g
lo
ss

rnn_size=128.0
rnn_size=256.0
rnn_size=384.0
rnn_size=512.0

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

ati
on

lo
ss

rnn_size=128.0
rnn_size=256.0
rnn_size=384.0
rnn_size=512.0

Increasing rnn_size does not improve performance

Fig. C.8 Validation loss improves initially with higher-dimensional hidden states but deterio-
rates after > 256 dimensions.

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ain

in
g
lo
ss

seq_length=128.0, wordvec=32.0
seq_length=128.0, wordvec=64.0
seq_length=256.0, wordvec=32.0
seq_length=256.0, wordvec=64.0
seq_length=64.0, wordvec=32.0
seq_length=64.0, wordvec=64.0

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

ati
on

lo
ss

seq_length=128.0, wordvec=32.0
seq_length=128.0, wordvec=64.0
seq_length=256.0, wordvec=32.0
seq_length=256.0, wordvec=64.0
seq_length=64.0, wordvec=32.0
seq_length=64.0, wordvec=64.0

Training curves for various network input configurations

Fig. C.9 seq_length=128 and wordvec=32 yields lowest validation loss.

C.5 Additional large-scale subjective evaluation results 93

0 10 20 30 40 50
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ain

in
g
lo
ss

seq_length=128.0, wordvec=16.0
seq_length=128.0, wordvec=32.0
seq_length=128.0, wordvec=64.0

0 10 20 30 40 50
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Va
lid

ati
on

lo
ss

seq_length=128.0, wordvec=16.0
seq_length=128.0, wordvec=32.0
seq_length=128.0, wordvec=64.0

Decreasing wordvec does not improve performance

Fig. C.10 Perturbations about wordvec=32 do not yield significant improvements.

C.5 Additional large-scale subjective evaluation results
Related discussion is in section 7.2 on page 51.

S A T B AT ATB SATB
under18 1.0 0.0 0.33 0.25 0.92 0.42 0.63
18to25 0.73 0.56 0.69 0.38 0.72 0.68 0.55
26to45 0.76 0.68 0.64 0.52 0.73 0.68 0.62
46to60 0.72 0.52 0.63 0.78 0.7 0.6 0.51
over60 1.0 0.67 0.2 0.33 0.89 0.67 0.81

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
co

rre
ct

Performance by question type and age group

Age group
under18
18to25
26to45
46to60
over60

Fig. C.11 Proportion of correct responses for each question type and age group.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Research aims and scope
	1.3 Organization of the chapters

	2 Background
	2.1 Recurrent neural networks
	2.1.1 Notation
	2.1.2 The memory cell abstraction
	2.1.3 Operations on RNNs: stacking and unrolling
	2.1.4 Training RNNs and backpropagation through time
	2.1.5 Long short term memory: solving the vanishing gradient

	3 Related Work
	3.1 Prior work in automatic composition
	3.1.1 Symbolic rule-based methods
	3.1.2 Early connectionist methods
	3.1.3 Modern connectionist models

	3.2 Automatic stylistic composition
	3.2.1 Applications to Bach chorales
	3.2.2 Evaluation of automatic composition systems

	4 Automatic stylistic composition with deep LSTM
	4.1 Constructing a corpus of encoded Bach chorales scores
	4.1.1 Preprocessing
	4.1.2 Sequential encoding of musical data

	4.2 Design and validation of a generative model for music
	4.2.1 Training and evaluation criteria
	4.2.2 Establishing a baseline with N-gram language models
	4.2.3 Description of RNN model hyperparameters
	4.2.4 Comparison of memory cells on music data
	4.2.5 Optimizing the LSTM architecture
	4.2.6 GPU training yields 800% acceleration

	4.3 Results and comparison

	5 Opening the black box: analyzing the learned music representation
	5.1 Investigation of neuron activation responses to applied stimulus
	5.1.1 Pooling over frames
	5.1.2 Probabilistic piano roll: likely variations of the stimulus
	5.1.3 Neurons specific to musical concepts

	6 Chorale harmonization
	6.1 Adapting the automatic composition model
	6.1.1 Shortcomings of the proposed model

	6.2 Datasets
	6.3 Results
	6.3.1 Error rates harmonizing Bach chorales
	6.3.2 Harmonizing popular tunes with BachBot

	7 Large-scale subjective human evaluation
	7.1 Evaluation framework design
	7.1.1 Software architecture
	7.1.2 User interface
	7.1.3 Question generation
	7.1.4 Promoting the study

	7.2 Results
	7.2.1 Participant backgrounds and demographics
	7.2.2 BachBot's performance results

	8 Discussion, Conclusion, and Future Work
	8.1 Discussion and Conclusion
	8.2 Summary of contributions
	8.3 Extensions and Future Work
	8.3.1 Improving harmonization performance
	8.3.2 Ordering of parts in sequential encoding
	8.3.3 Extensions to other styles and datasets
	8.3.4 Analyzing results using music theory

	References
	Appendix A Appendix A: A primer on Western music theory
	A.1 Notes: the basic building blocks
	A.1.1 Pitch
	A.1.2 Duration
	A.1.3 Offset, Measures, and Meter
	A.1.4 Piano roll notation

	A.2 Tonality in common practice music
	A.2.1 Polyphony, chords, and chord progressions
	A.2.2 Chords: basic units for representing simultaneously sounding notes
	A.2.3 Chord progressions, phrases, and cadences
	A.2.4 Transposition invariance

	Appendix B Appendix B: An introduction to neural networks
	B.1 Neurons: the basic computation unit
	B.2 Feedforward neural networks
	B.3 Recurrent neural networks

	Appendix C Appendix C: Additional Proofs, Figures, and Tables
	C.1 Sufficient conditions for vanishing gradients
	C.2 Quantifying the effects of preprocessing
	C.3 Discovering neurons specific to musical concepts
	C.4 Identifying and verifying local optimality of the overall best model
	C.5 Additional large-scale subjective evaluation results

