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Abstract

Predictive Entropy Search (PES) is an information-theoretic based acquisition function
that has been demonstrated to perform well on several applications. PES harnesses
our estimate of the uncertainty in our objective to recommend query points that maxi-
mize the amount of information gained about the local maximizer. It cannot, however,
harness the potential information gained in our objective model hyperparameters for
better recommendations. This dissertation introduces a modification to the Predictive
Entropy Search acquisition function called Integrated Predictive Entropy Search (IPES)
that uses a fully Bayesian treatment of our objective model hyperparameters. The IPES
aquisition function is the same as the original PES aquision function except that the
hyperparameters have been marginalized out of the predictive distribution and so it is
able to recommend points taking into account the uncertainty and reduction in uncer-
tainty in the hyperparameters. It can recommend queries that yield more information
about the local maximizer through information gained about hyperparameters values.

Currently, approximations used in the computation of the PES acquisition function re-
quire stationary kernels - a condition that greatly restricts the types of kernel functions
that can be used in the Gaussian process objective model. More flexible kernel func-
tions, in particular the Spectral Mixture kernel and kernels using input space warpings,
are examined. Alternative approximations for use in PES and IPES are introduced, in
particular a procedure for obtaining analytic approximations to Gaussian process sam-
ples. These alternate approximations eliminate the stationarity requirement in PES and
extend the applicability of PES and IPES to a larger class of problems.

Performance of IPES and other methods including PES are examined both with and
without these alternative approximations.
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Chapter 1

Introduction

1.1 Optimization

Optimization problems are widespread in science, engineering, economics and finance.
For example, regional electricity grid system operators (ISOs) optimise the production
of electricity (solar, wind and fossil fuels) and its allocation to produce and provide en-
ergy as e�ciently and cheaply as possible; The Harvard Clean Energy Project identifies
molecules for organic photovoltaics that have optimal power conversion e�ciency; soft-
ware controlling robots can be optimised so that the agent fulfils user specified goals in
the most energy e�cient, timely or safest way. Generally speaking, optimization prob-
lems come in two broad categories [17]. First, there are optimization problems where it is
very cheap to query the function to be optimized. Often function evaluation takes place
on a computer and its derivative observations are available. This type of optimization
is not the main application of the types of methods that will be explored in this thesis.

The second type of optimization, and the one that we will be primarily concerned with,
is the so-called black-box optimization. In these the types of problems we seek to find the
global maximizer of a nonlinear and generally nonconvex function f whose derivatives
are unavailable. In applications resulting in such objectives, data collection is often
expensive, di�cult and potentially dangerous. For this reason it is crucial to gather data
in an e�cient way and to extract the maximum possible value from it. Active learning -
using an algorithm to recommend at which points to query the function - will help us to
optimize our objective more quickly and with fewer data-points. This thesis will examine
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the application of a Bayesian approach to optimization called Bayesian optimization as
well as an information theoretic technique for active learning recommendations for data
collection.

Bayesian optimization has been successfully applied to optimization problems in science
and engineering. For example; to adjust the parameters of a robot’s controller [6]; to find
the optimal pump-and-treat wells for water decontamination [15]; to automatically find
optimal parameters for statistical machine translation systems [3] and other machine
learning systems [42]. Many organizations use the OBM ILOG CPLEX1 mixed integer
programming solver which has 76 free parameters, often too many to tune by hand [39].
Bayesian optimization has also emerged as a powerful tool for automating design choices
[39].

1.2 Contribution of Thesis

Bayesian optimization is a powerful optimization technique and methods currently im-
plemented in the python Bayesian optimization library Pybo, in particular the method
called Predictive Entropy Search (PES), have been shown to perform well on several
applications [18]. However, the current implentation restricts the class of problems on
which these methods can be applied.

In this this thesis, I investigate an modification to PES called Integrated Predictive En-
tropy Search (IPES) that has a better theoretical foundation than predictive entropy
search. I examine its performance when compared with other popular Bayesian opti-
mization and, in particular, Predictive Entropy Search.

I also investigate methods to extend the applicability of IPES as well as PES to more
realistic applications In particular input space warping, the application of more expres-
sive kernel functions (in particular the Spectral Mixture Kernel) and a GP sampling
approach called bootstrap sampling.

These methods were implemented in and the pybo

2 package and will become freely
available for public use.

1https://www.ibm.com/software/commerce/optimization/cplex-optimizer/
2Ho�man and Shahriari, https://github.com/mwho�man/pybo



Chapter 2

Bayesian Optimization

2.1 The Bayesian Optimization Algorithm

The goal of Bayesian optimization is to solve optimization problems of the form

x
ı

= arg max
xœX

f(x)

where f is often a nonlinear and non-convex function over a domain X . In global
optimization, X is often a bounded subset of Rd. We also assume that f is a black-box
function; f has no simple closed form but can be evaluated at any query point in the
domain and its derivatives are usually unavailable. We also assume that we are only able
to observe our function f through unbiased noisy observations y, meaning E[y|f ] = f(x).

To address the problems associated with black-box optimization, Bayesian optimization
models the unknown function and its behaviour in order to minimize the number of
evaluations required to find the global optima. Crucial to Bayesian optimization is the
use of a model that maintains a measure of uncertainty in its function values. This
is important because often the observations used to train our model is corrupted by
noise, and we harness this measure of uncertainty for form recommendations for data
collection.

Bayesian optimization is a sequential model based approach to problem solving [39]. We
incorporate our prior beliefs about our objective function in our model and iteratively
update these believes in the presences of newly queried datapoints. The generic Bayesian
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optimization algorithm is as follows [18]:

Algorithm 1 Bayesian optimization
Input: a black-box function f

1: for n = 1, . . . , N do
2: select x

n

= arg max
xœX –

n≠1

(x)
3: query f at x

n

to obtain y

n

4: augment data D
n

= D
n≠1

fi {(x
n

, y

n

)}
return Âx

N

= arg max
xœX µ

N

(x)

Two main decisions have to be made in order to use Bayesian optimization: we need
to select the model that we will use to model our objective, and we need to select an
acquisition function that we will use to recommend data points to sample.

2.2 Choice of Model

It is necessary for our choice of objective function model to have two main attributes:
it needs to be able to incorporate our prior beliefs about our objective and for these
to be updatable, and it needs to maintain a measure of uncertainty over its predic-
tions. What sets Bayesion optimization apart from most other optimization procedures
is that it uses a probabilistic model for our objective and exploits this model to produce
recommendations for where to next query the objective.

Many candidates for objective models have been proposed. Some of the earliest work in
Bayesian optimization used the Wiener process [26] [? ]. Shahriari et al. [39] outline
some of the parametric models that have been used. Snoek et al. [42] have proposed
the use of deep neural networks. Hutter et al. proposed a method using random forests
in sequential model-based algorithm configuration (SMAC) [23].

The most common class of nonparametric models for Bayesian optimization, and the
one that we will be focusing on in this thesis, are the Gaussian process models.

2.2.1 The Gaussian Process

A Gaussian process (GP) is an elegant way of defining a distribution over functions.
Let X be a collection of n points in X , x

1

, x
2

, . . . , x
n

, stacked into a matrix. A GP is
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any distribution over functions such that the function values f(x
1

), f(x
2

), . . . , f(x
n

) are
jointly Gaussian distributed [37] [9]. Before conditioning on data, a Gaussian process,
denoted GP(µ, k), is completely specified by its prior mean function µ : X æ R and
covariance function k : X ◊ X æ R, also referred to as the kernel function. These
functions specify

E[f(x)] = µ(x) and (2.1)
cov[f(x), f(xÕ)] = k(f(x), f(xÕ)) (2.2)

If we further assume that the observations y

1

, y

2

, . . . , y

n

associated with X are inde-
pendently and normally distributed given f(x

1

), f(x
2

), . . . , f(x
n

) we have the following
generative model [39]:

f ≥ N (m, K) (2.3)
y ≥ N (f , ‡

2I) (2.4)

where f = [f(x
1

), f(x
2

), . . . , f(x
n

)]€, y = [y
1

, y

2

, . . . , y

n

]€ are column vectors, the mean
vector m is defined by m

i

= µ(x
i

) and the covariance matrix, or kernel matrix, K by
K

i,j

= k(x
i

, x
j

). Given the set of observations D
n

= {(x
i

, y

i

)} and an arbitrary point
we can compute the Gaussian process posterior GP(µ

post

, k

post

):

µ

post

(x) = µ(x) + k(x, X)€(K + ‡

2I)≠1(y ≠ m) and (2.5)
k

post

(x, xÕ) = k(x, xÕ) ≠ k(x, X)€[K + ‡

2I]≠1

k(X, xÕ) (2.6)

where k(x, X) = [k(x, x
1

), k(x, x
2

), . . . , k(x, x
n

)]€. And so the predictive distribution of
an observation y

ı

at a test point x
ı

has the form

p(y
ı

|x
ı

, X, y) = N (µ(x) + k(x, X)€(K + ‡

2I)≠1(y ≠ m), (2.7)
k(x, xÕ) ≠ k(x, X)€[K + ‡

2I]≠1

k(X, xÕ)). (2.8)

Here we can see one of the main limitations of the Gaussian process model - inference
requires computing matrix inverses, and so is O(n3) in the number of observations. As
a nonparametric model, it is in fact parametrized by the our dataset. The amount of
information that our model can capture about the data can grow as we gather more
data but so do the computation costs [13]. However, for problems where Bayesian
optimization is appropriate, we are often data scarce.
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Mean Functions

The prior mean function is a way of incorporating prior and expert knowledge of the
objective function in a principled way. In practice, however, this function is often set
to a constant µ(x) = µ

0

. In fact, it is often set to zero since the kernel function can
account for uncertainty about the mean [9]. In what follows, unless otherwise specified,
it is assumed that a constant prior mean function is used.

Covariance Functions (Kernels)

The kernel function determines the kind of structure that can be captured by a GP
model and how it generalizes. The kernel must be a positive definite function of two
inputs k(x, xÕ). Kernels are often used to specify the similarity between two objects and
in the context of Gaussian processes specify the covariance between function values.

The main kernel function that will be used in our experimentation will be the squared
exponential kernel with automatic relevance determination determination (SEARD).
The SEARD kernel [12] is defined as

k(x, xÕ) = ‡

2 exp
A

≠
Dÿ

d=1

(x
d

≠ x

Õ
d

)2

2l

d

2

B

(2.9)

where D is the number of dimensions of the data. The feature that distinguishes the
SEARD kernel from the standard squared exponential kernel is the individual length-
scales in each dimension. In this way, through hyperparameter learning, our kernel
can scale the data independently in each dimension. The lengthscale hyperparameter
l

d

determines the length of the wiggles in dimension d and generally determining the
distance away from datapoints that our GP regressor can extrapolate. The output
variance hyperparamter determines the average the average distance of the function
away from the mean [10] This parameter corresponds to the normalizing constant in the
kernel spectral density, discussed in chapter 3.
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Figure 2.1: Samples from a GP with a SEARD kernel using various hyperparameter
settings.

2.3 Acquisition Functions

Most acquisition functions are designed to recommend candidates for the objective max-
imizer. In this case, we would want –

n

(x) to be high in areas where the maximum is
likely. This would suggest that –

n

(x) should closely follow our posterior mean, a be-
haviour known as exploitation. However, we would also like recommendations that
explore our search space and not just the maximum of the posterior mean at step N of
our algorithm in order to ensure that Âx

N

yields the global maximum. For this, we need
to take into account the uncertainty in our model predictions and utilize this uncertainty
in our recommendations. A good balance of exploitation and exploration is required for
a well performing acquisition function and the right balance is objective dependent.

The optimal policy would be to plan for multiple samples, especially in cases where the
number of samples in the budget for our problem is known. At each iteration, we would
want to select the best point given that we will be sampling N points according to a
given strategy [36] [16]. This is often too computationally expensive in practice and so
most current acquisition functions are myopic heuristics, and attempt to approximate
the total value of querying any given point.

The acquisition functions used in Bayesian optimization are often multi-modal and dif-
ficult to optimize with respect to querying e�ciency when compared to the black-box
function [39]. Since the acquisition function, –

n

, is to be maximized at every iteration, it
is necessary for it to be cheap to evaluate or approximate, especially when compared to
the evaluation of our black-box objective. Many have analytic forms or can be approx-
imated analytically and are easier to optimize using numerical optimization techniques
[21] such as LBFGS [35] [28] and DIRECT [24].
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We would like our data collected to be as valuable as possible to our task of maximizing
our objective function. Shahriari et al. [39] discuss framing this value in terms of a
utility function mapping points x œ X , along with its function value v = f(x) and
model hyperparameters ◊ to the quality of the query,

U : Rd ◊ R ◊ � æ R, (2.10)

where U is larger at points that are more valuable for our optimization task.

Using whichever utility function we define and the data observed so far, we can define
an acquisition function by marginalizing out the hyperparameters ◊ and function values
v. We mostly ignore the dependence on ◊ but will return the discussion of integrating
over the hyperparameters in Chapter 5.

–(x; D
n

) = E
◊

E
v

[U(x, v, ◊)] (2.11)

Note that this function is often called the expected utility in the experimental design
and decision theory literature.

2.3.1 Improvement-based Acquisition Functions

Probability of Improvement

An early proposal for an acquisition function was the probability of improvement (PI)
acquisition function [26]. This acquisition function models the probability that a par-
ticular data point will yield a larger objective value over the best observation so far,
defined to be the observation with the highest posterior mean. Denote the previously
sampled point with the highest posterior mean by

x+

n

= argmax
xiœDn

µ

n

(x
i

). (2.12)

We will call this point the current incumbent. Kushner originally proposed selecting
the point with the largest possibility of improvement over this incumbent [26] but this
approach is biased toward exploitation, exhibits very myopic behaviour and tends to
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not explore the domain very much. To remedy this, Kushner suggests incorporating a
tradeo� parameter › Ø 0 to consider the probability of improving over a target · =
µ(x+

n

) + ›. Formally, we can define –(x; D
n

) = P (v > ·). To connect this idea with our
earlier discussion of utility functions, this definition is equivalent to that of setting the
utility to the improvement indicator utility U(x, v, ◊) = I[v > · ]. Since the predictive
posterior is Gaussian, we can compute the expected utility analytically:

–

PI

(x; D
n

) := E
v

[I[v > · ]] (2.13)

=
⁄

v>·

N (v; µ

n

(x), ‡

2(x))dv (2.14)

= �
A

µ

n

(x) ≠ ·

‡

n

(x)

B

(2.15)

where � is the standard normal cumulative distribution function. Notice that since �
is a monotonic increasing function, we can equivalently maximize

–(x; D
n

) = µ

n

(x) ≠ ·

‡

n

(x) (2.16)

Kushner recommends using a decreasing schedule to set › [21], however, empirical results
on a suite of test functions showed that this approach did not yield improvements over
using a constant › value [29].

Expected Improvement

The PI considers only the probability of improvement but weights all potential improve-
ments equally. The previous utility gave a value of 1 to any improvement over the target
and 0 to no improvement. The Expected Improvement acquisition function, a concept
proposed by Mockus [32], defines the utility as the amount of improvement over our
target. This utility is called the improvement function:

U(x, v, ◊) = (v ≠ ·)I[v ≠ · ]. (2.17)

Again, since our predictive posterior is Gaussian, we can compute the expectation of
this utility analytically using integration by parts [25] [5]:
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–

EI

:= E
v

[(v ≠ ·)I(v ≠ ·)] (2.18)

= (µ
n

(x) ≠ ·)�
A

µ

n

(x) ≠ ·

‡

n

(x)

B

+ ‡

n

(x)„
A

µ

n

(x) ≠ ·

‡

n

(x)

B

(2.19)

where „ is the standard normal probability density function.

Using the incumbent point as the target (› = 0) works reasonably well for EI [40] [39].

2.3.2 Optimistic Acquisition Functions

Upper Confidence Bounds

Using upper confidence bounds has long been a popular was of balancing exploration and
exploitation in the context of the multi-arm bandit problem [27] [39]. The idea moved
over to the Bayesian optimization literature with the introduction of an algorithm called
Sequential Design for Optimization [8] and a similar method called UCB1 was proposed
by Auer et. al [2] [21]. Both ideas correspond to maximizing the sum of the posterior
mean and weighted variance, µ

n

(x) + —‡

n

(x). Shahriari et al. refer to this class of
acquisition function as optimistic because they are “optimistic in the face of uncertainty”
[39], indeed, maximizing a fixed probability best case scenario.

Using the acquisition function defined by

–

UCB

(x; D
n

) := µ

n

(x) + —

n

‡

n

(x) (2.20)

Srinivas et al present theoretically motivated guidelines, with respect to minimizing
regret, for setting and scheduling the parameter —

n

[44]. It can be shown that, for most
kernels, this method has cumulative regret bounded by O(N“

N

) where “

N

is sublinear
in N and guaranteed convergence [21].

2.3.3 Distribution of the Maximizer Based Procedures

A class of acquisition procedures considers the posterior distribution over the unknown
latent variable x

ı

denoted p(x
ı

|D
n

). The two main approaches explored so far is inducing
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exploration by sampling from this distribution and examining its entropy.

Thompson Sampling

Thompson sampling (TS) was introduced in 1933 [32] [38] and re-emerged in the multi-
armed bandit literature [7].

The TS procedure samples the next query point from the posterior over the latent
maximizer x

ı

:

x
n+1

≥ p(x
ı

|D
n

). (2.21)

This procedure is naturally applied to the bandit setting - TS samples a reward function
from our posterior distribution of reward functions and selects the arm that maximizes
this function. However, in order to apply this procedure in black-box optimization of
functions over continuous spaces, a function must be sampled from our GP posterior,
f ≥ GP(µ, k|D

n

) and then optimized. The sample f must be fixed an we must be able
to query it at arbitrary points in order for it to be optimized. Shahriari et al. [38] use
spectral sampling techniques to produce approximate samples from the posterior that
can be maximized. In this way we can define the TS acquisition function according to
the following procedure [39].

–

TS

(x; D
n

) := f

n

(x) where f

n

≥ GP(µ, k|D
n

) (2.22)

Notice that although this procedure is generated from random sampling rather than
optimization, it does not avoid the optimization altogether since the GP posterior sam-
ple still has to be optimized. Experiments have shown good performance form TS in
low dimensions but excessive exploration results in degrading performance in higher
dimensions.

Thompson sampling is a sub-procedure used in Predictive Entropy Search and will be
discussed in more detail in Chapter 3.
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Entropy Search and Predictive Entropy Search

Rather than sampling from the posterior distribution of the global maximizer x
ı

, Hennig
and Schuler describe an information theoretic method called Entropy Search which seeks
to maximize the information about this distribution resulting from the next sample
point[17]. This idea is expressed in the corresponding acquisition function - the expected
reduction in entropy on the distribution over x

ı

resulting from observing the point x.

–

ES

(x) := H
Ë
p(x

ı

|D
2
] ≠ E

p(y

x

|D,x)

5
H

Ë
p(x

ı

|D fi {x, y

x

})
È6

(2.23)

where H = ≠ s
p(x) log p(x)dx is the di�erential entropy of p(x). However, exact evalu-

ation of (3.1) is feasible only after many approximations [17].

In [18] Hernández-Lobato et al. base their predictive entropy search method on an
equivalent but easier to approximate acquisition function.

–

PES

(x) := H
Ë
p(y

x

|D)
È

≠ E
p(xı|D)

5
H

Ë
p(y

x

|D, x
ı

)
È6

(2.24)

We will discuss the derivation and computation of the PES acquisition function in Chap-
ter 3.

Hernández-Lobato et al. show that PES outperforms ES in terms of immediate regret
on synthetic and real-world functions and produces better result than the expected
improvement (EI) acquisition function. They also state that PES can easily marginalize
its approximation with respect to the posterior distribution of its Gaussian process
hyperparameters, while ES cannot. We will return to the discussion of marginalizing
over the hyperparameters in Chapter 5.

2.4 Evaluation Metric

In order to compare various methods other it is necessary to specify an evaluation met-
ric. A popular metric in the literature consistent with our statement of the Bayesian
optimization problem is Immediate regret (IR) which we will simply refer to as regret
r = |f(Âx

N

) ≠ f(x
ı

)| where Âx
N

is the recommended point at iteration N . In the state-
ment of the Bayesian optimization algorithm (algorithm 1) we recommended the Latent
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Maximizer:

Âx
N

= argmax
xœX

µ

N

(x) (2.25)

where µ

N

is the predictive posterior mean function at iteration N . From a Bayesian
modelling perspective, this is the correct recommendation to use. If we believe our mod-
elling assumptions, including that the likelihood noise is Gaussian, the latent maximizer
recommendation will minimize regret in expectation. In practice, however, it may be dif-
ficult for Bayesian optimization users to justify recommending a point that, potentially,
has not been seen before. In this case, we have the Best Observed recommendation.

Âx
N

= argmax
xœ{xi}N

i=1

y

i

(2.26)

This recommender recommends the x value corresponding to the best y value observed
so far. This recommender restricts the set of possible recommendations to locations
that have already been seen. For objectives where the observation noise is small this
recommender works reasonably well. In cases where observation noise is large, however,
it can mistake high value regions of the objective with locations where a sample ‘

i

≥
p(y|f(x)) happens to be large. The Incumbent recommender is a hybrid of these two
approaches:

Âx
N

= argmax
xœ{xi}N

i=1

µ

N

(x) (2.27)

As with the best observed recommender, we restrict our potential recommendations
to the previously queried points. With this recommender, however, we leverage our
model at these points to select our recommendation, making use of our estimates in our
uncertainty.

All three of these recommendations are possible using the pybo package. For the exper-
iments in this dissertation, the latent maximizer recommender was used.

I will note here that although the evaluation metric used to evaluate the performance of
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PES and IPES, neither optimize that objective directly and we hope that it will perform
well indirectly. Although not investigated in this dissertation, it would be interesting
to design and experiment to evaluate how well PES and IPES maximize their designed
objective, the reduction in entropy over x

ı

.

2.5 Modular Bayesian Optimization

In this dissertation, the majority of the implementation was within and experimentation
was performed with the Bayesian optimization python package pybo, except for the ex-
periments in chapter 4. The pybo package was written and is maintained by Matthew
W. Ho�man and Bobak Shahriari1. In pybo, each component of Bayesian optimization
is encapsulated within a python object so that the choices necessary for Bayesian opti-
mization can be easily varied to facilitate experimentation. Because there is not “best”
setting for these choices that work well on every application [38], providing these choices
is not only important for the development of Bayesian optimization but to make it more
widely applicable for its users. The authors also view their modular approach as a step
toward automating the process of Bayesian optimization. Ho�man and Shariari discuss
their design choices and argue for a modular approach to Bayesian optimization in [20].

The particular aspect of Bayesian optimization that is examined in this dissertation is
that of the acquisition function (chapter 5.1) and but I also examine some approaches
to extend the applicability of the methods in pybo (chapter 6).

1https://github.com/mwho�man/pybo



Chapter 3

Predictive Entropy Search

3.1 Entropy Search and Predictive Entropy Search

MacKay [30] proposed using an information theoretic approach for active data collection.
Following this approach, Hennig and Schuler proposed a method called Entropy Search
[17] which seeks to maximize the information about the location of the maximizer x

ı

at
iteration n of Bayesian optimization.

As a measure of the current information about the location of the maximizer, they use
the negative di�erential entropy of the posterior p(x

x

|D
n

). Correspondingly the aim of
ES is to maximize the decrease in entropy resulting from querying the function. Hennig
and Schuler define the ES acquisition function as:

–

ES

(x; D
n

) := H
Ë
p(x

ı

|D)
È

≠ E
p(y

x

|D,x)

5
H

Ë
p(x

ı

|D fi {x, y

x

})
È6

(3.1)

Notice that this function computes the di�erence in the entropy of the current posterior
p(x|D

n

) and the expected entropy of the posterior after conditioning on an observation
at x.

Rather than attempting to balance a tradeo� between exploration and exploitation, the
entropy search acquisition function aims to recommend queries that yield the most of
information about the location of the maximizer of our objective x

ı

. In this way, the
function values at each the recommendation x

n

may be low in the hopes that the resulting
posterior p(x

ı

|D
n+1

) has low entropy and we are more certain about the location of the
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maximizer.

Unfortunately in practice, Hennig and Schuler were only able to compute 3.1 after per-
forming many approximations.

In [18] Hernández-Lobato et al. note that the ES acquisition function is equivalent to
the mutual information between x

ı

and y which is symmetric.

–

ES

(x|D
n

) = H[p(x
ı

|D
n

)] ≠
⁄

y

p(y|D
n

, x)H
Ë
p(x

ı

|D fi {(x, y)})
È
dy (3.2)

= H[x
ı

] ≠ H[x
ı

|y] (3.3)
= I(x

ı

; y) = I(y; x
ı

) (3.4)
= H[p(y|D

n

x)] ≠ E
p(xı|Dn)

Ë
H[p(y|D

n

, x, x
ı

)]
È

(3.5)

and so they define an equivalent acquisition function:

–

PES

(x
ı

; D
n

) := H[p(y|D
n

, x)] ≠ E
p(xı|Dn)

Ë
H[p(y|D

n

, x, x
ı

)]
È

(3.6)

These entropies are computed over predictive posteriors and are much easier to approx-
imate. In fact, the entropy on the left is computed over our GP predictive posterior and
can be computed analytically as the entropy of a Gaussian: H[p(y|D)] = log

Ò
2fie v

n

(x)
where v

n

(x) is the variance of the predictive distribution (incorporating the likelihood
variance).

Three hurdles have to be overcome in order to compute the entropy on the right side of
equation 3.6: i) we need to be able to compute or approximate the predictive distribution
conditioning on a given point being the location of the maximizer, ii) we need to be able
to compute the entropy of such a distribution and iii) we need to be able to compute
the expectation of this entropy over the posterior distribution of x

ı

.

3.2 PES Approximations

Hernández-Lobato et al. take the following approach to evaluating the right side of
equation 3.6: the expectation over x

ı

is computed using a Monte Carlo approximation
which will require sampling from p(x

ı

|D
n

). Given a sample x
ı

≥ p(x
ı

|D
n

), moment
matching is used to approximate p(y|D

n

, {x
ı

, y}). The details of these approximations
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are presented in the following sections.

3.2.1 Sampling from p(xı|Dn)

As discussed in Chapter 2, Thompson sampling is used to approximate sampling from
p(x

ı

|D
n

). For motivation, let us consider the finite domain setting, say X = {x
1

, x
2

, . . . , x
d

}.
Note that the latent function takes the form of a d-dimensional vector
f = [f(x

1

), f(x
2

), . . . , f(x
d

)]. Write p(x
ı

= x
i

|D
n

) to denote the probability that the
maximum of f is in position x

i

. Then

p(x
ı

= x
i

|D
n

) =
⁄

p(f |D
n

)
Ÿ

jÆm

I[f(x
i

) Ø f(x
j

)]df . (3.7)

In the finite domain case, this suggests that samples can be generated by i) sampling
from posterior p(f |D

n

) and then ii) maximizing the function f , taking the index of the
maximum as x

ı

.

We can apply this generative procedure to produce samples from p(x
ı

= x
i

|D
n

) but this
requires optimizing samples drawn from our GP posterior. Optimizing such a sample
directly would cost O(m3) where m is the number of function evaluations required to
find the optimum. Instead, Hernández-Lobato et al. optimize an analytic approximation
to samples from our GP posterior f ≥ GP(µ, k|D

n

).

The analytic approximation is the same as the one used for Thomspon sampling by
Shahriari et al. in [38]. A description of the procedure is given in [18] and a summary
is given below.

Analytic Approximations of GP samples

A kernel function k is called stationary or shift-invarient if k(x, xÕ) = k(x ≠ xÕ
, 0). Intu-

itively, when used as part of a GP prior, we are specifying that the output covariance of
two inputs depends only on their relative position. The procedure used for approximat-
ing hinges on the use of stationary kernels since it appeals to Bochner’s theorem[18]:
Theorem 3.2.1 (Bochner’s theorem). A continuous, stationary kernel is positive defi-
nite if and only if it is the Fourier transform of a non-negative, finite measure.
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As a consequence, every stationary kernel k has an associated density s(w), known as
the spectral density, which is the Fourier dual of k:

Define the associated probability density function by normalizing the spectral density:
p(w) = s(w)/– where – =

s
s(w)dw.

k(x, xÕ) =
⁄

e

≠iw

€
(x≠x

Õ
)

s(w)dw (3.8)

s(w) = 1
(2fi)d

⁄
e

iw

€
·k(·,0)

d· (3.9)

We are also able to generate shift invariant kernels given a spectral density s(w), an
idea we will return to in chapter 6. By symmetry, equation 3.8 gives us

k(x, xÕ) = –

⁄
e

≠iw

€
(x≠x

Õ
)

p(w)dw (3.10)

= –

⁄ 1
2

Ë
e

≠iw

€
(x≠x

Õ
) + e

iw

€
(x≠x

Õ
)

È
p(w)dw (3.11)

= –

⁄ 1
2 cos(w€x ≠ w€xÕ)p(w)dw (3.12)

= –E
p(w)

[cos(w€x ≠ w€xÕ)p(w)] (3.13)

Notice that
s

2fi

0

cos(a + 2b)db = 0 for any constant a œ R. In particular

0 =
⁄

2fi

0

cos(w€x + w€xÕ + 2b)db (3.14)

=
⁄

2fi

0

1
2fi

cos(w€x + w€xÕ + 2b)db (3.15)

= E
p(b)

[cos(w€x + w€xÕ + 2b)] (3.16)

where p(b) is the uniform distribution over [0, 1]. Using the identity 2 cos(x) cos(y) =
cos(x ≠ y) + cos(x + y), continuing our derivation from equation 3.13

k(x, xÕ) = –E
p(w)

[cos(w€x ≠ w€xÕ)] + –E
p(b)

[cos(w€x + w€xÕ + 2b)] (3.17)
= –E

p(w,b)

[cos(w€x + b ≠ w€xÕ ≠ b) + cos(w€x + b + w€xÕ + b)] (3.18)
= 2–E

p(w,b)

[cos(w€x + b) cos(w€xÕ + b)] (3.19)

To reduce the variance of our estimator we can average over stacked samples or size m,
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W, b where [W]
i

≥ p(w̨) and [b]
i

≥ p(b).

k(x, xÕ) = 2–

m

E
p(W,b)

[cos(Wx + b)€ cos(WxÕ + b)] (3.20)

= E
p(„)

[„(x)€
„(x)] (3.21)

where „(x) =
Ò

2–/m cos(Wx + b) and „ ≥ p(„) is equivalent to W, b ≥ p(W, b).

Consider a linear model f(x) = „(x)€
◊ where ◊ ≥ N (0, 1). Also assume that obser-

vations are corrupted by Gaussian noise - y

i

≥ N (f(x
i

), ‡

2). Let D
n

be a set of n

observations. Then the posterior is also normal, p(◊|D
n

, „) = N (m, V) [12] [18] where

m = (�€� + ‡

2I)≠1�€y (3.22)
V = (�€� + ‡

2I)≠1

‡

2 (3.23)

and where [�]
i

= „(x
i

) and [y]
i

= y

i

. The predictive distribution is also Gaussian
N (y; µ

n

(x), v

n

(x)) where

µ

n

(x) = „(x)€(�€� + ‡

2I)≠1�€y (3.24)
v

n

(x) = „(x)€(�€� + ‡

2I)≠1

„(x)€
‡

2 (3.25)

Applying the Matrix inversion lemma (appendix A.3 [37]) we can rewrite the predictive
distribution mean and variance as:

µ

n

(x) = „(x)€�€(��€ + ‡

2I)≠1y (3.26)
v

n

(x) = „(x)€
„(x) ≠ „(x)€�€(��€ + ‡

2I)≠1�„(x). (3.27)

The expectations of these expression over p(W, b) yield

µ

n

(x) = k(x, X)€(K + ‡

2I)≠1y (3.28)
v

n

(x) = k(x, xÕ) ≠ k(x, X)€[K + ‡

2I]≠1

k(X, xÕ). (3.29)

the mean and variance of the GP predictive posterior (with zero prior mean) as in
equations 2.7 and 2.8.

In summary, to approximate a sample from p(x
ı

|D
n

) we first sample W from the spectral
density of the kernel k, b from the uniform distribution over [0, 2fi] and ◊ from N (0, I).
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Figure 3.1: Left: Approximating the SEARD and MaternARD kernel with 50, 100, and
1000 random features. Right: GP samples and random feature approximate samples
from a GP predictive distribution.

Treating f(x) = „(x)€
◊ as a sample from our GP we consider the maximizer as the

required sample.

3.2.2 Approximating p(y|Dn, x, xı)

Given approximate samples of x
ı

≥ p(x|D
n

), we need to be able to compute the
maximizer-conditioned predictive distribution p(y|D

n

, x, x
ı

) =
s

p(y|f(x))p(f(x)|D
n

, x, x
ı

).
The likelihood component of the integrand p(y|f(x)) is Gaussian by assumption but un-
fortunately the constraint that x is a global maximizer of f , that is f(z) Æ f(x

ı

) for
all z œ X , renders the distribution p(f(x)|D

n

, x, x
ı

) intractable. To approximate this
distribution Hernández-Lobato et al. use a set of weaker constraints (conditions on x

ı

)
[18] :

A. x
ı

is a local maximizer of f . Although we cannot enforce that x
ı

is a global
maximizer, we can condition on it being a local maximizer by requiring that:

A1. Òf(x
ı

) = O

A2. Ò2

f(x
ı

) is negative definite.

A3. Although not necessary to ensure that f(x
ı

) is a local optima, we make the simpli-
fying assumption that o� diagonal elements of the Hessian are zero, upper[Ò2

f(x
ı

)] =
0. This simplifies A2. to be diag[Ò2

f(x
ı

)] = 0.
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B. f(x
ı

) is larger than past observations. We would like to ensure that f(x
ı

) Ø
f(x

i

) for i Æ n but we only have access to the noisy observations y

i

and our predictive
posterior at x

i

. To avoid doing inference in this posterior we make the simplifying as-
sumption that f(x

ı

) > y

max

+‘ where ‘ ≥ N (0, ‡

2) where y

max

is the largest observation
so far.
C. f(x) is smaller than f(x). This is to say that we will be approximating the density
at x given that f(x) Æ f(x

ı

).

Intuitively, instead of conditioning on x
ı

being a global maximizer, we are assuming it
is a maximizer i) locally, ii) over the data we have seen so far and ii) over the relevant
datapoint under consideration by our distribution. This is a natural approximation
since knowledge of the maximizer f(x) is equivalent to |X | constraints of the form
f(x) Æ f(x

ı

). We are approximating this infinite collection of constraints with a finite
one.

We now describe the procedure used by Hernández-Lobato et al. to approximate
p(f(x)|D

n

, A., B., C.). Note that the dependence on the hyperparameter values have
been dropped from our notation.

Using the notation outlined in [18], define the latent variables z = [f(x
ı

); diag[Ò2(f(x
ı

))]]
and c = [y

n

; Òf(x
ı

); upper[Ò2

f(x
ı

)]] = [y
n

; 0; 0], constructed by vector concatenation,
and consider their distributions: Since f is distributed according to a GP, the vector
[z, c] is jointly Gaussian. Notice that c contains the random variables that we need to
condition on to enforce A1 and A3. We can compute the kernel matrix K yielding the
covariance of p([x, c]) and then condition on the required variables using the method
described in [43]. Writing

K =
S

U K
c

K
zc

K€
zc

K
c

T

V (3.30)

we can obtain the conditional Gaussian distribution

p(x|D
n

, A1) = p(z|c) = N (x; m
0

, V
0

) (3.31)
m

0

= K
zc

K≠1

c

(3.32)
V

0

= K
z

≠ K
zc

K≠1

c

K€
zc

(3.33)

The remaining constraints are incorporated into the distribution in observation space via
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products of terms which enforce these constraints. The term �
‡

2(f(x
ı

) ≠ y

max

), where
�

‡

2 is the zero-mean and ‡

2-variance Gaussian cdf, where incorporates the soft constraint
B. where ‘ ≥ N (0, ‡

2) has been marginalized out. The term r
d

i=1

I ([Ò2

f(x)]
ii

Æ 0)
incorporates constraint A2. We obtain the following expression

p(z|D
n

, A, B) Ã �
‡

2(f(x
ı

) ≠ y

max

) ·
C

dŸ

i=1

I
1
[Ò2

f(x)]
ii

Æ 0
2D

· N (z; m
0

, V
0

) (3.34)

A Guassian approximation q(z) of p(z|D
n

, A, B) is computed using Expectation Prop-
agation (EP) [31] [33], to help with integral computations over this distribution. EP
replaces each non-Gaussian factor with a gaussian one in the approximation so the re-
sult of the EP approximation can be written q(z) Ã [rd

i=1

N (z
i

|Êm
i

.

Â
v

i

)]N (z|m
0

, V
0

).

The next step in the approximation is to focus on the predictive distribution conditioned
on the two constraints considered so far, A and B. Let f = [f(x); f(x

ı

)]. Considering
the joint distribution of f and z, we further approximate

p(f |D
n

, A, B) =
⁄

p(f |z, D
n

, A, B)p(z|D
n

, A, B)dz (3.35)

¥
⁄

p(f |z, D
n

, A, B)q(z)dz (3.36)

¥
⁄

p(f |z, D
n

, A1)q(z)dz (3.37)

= N (f ; mf , Vf ) (3.38)

The last approximation is an assumption that f is independent of condition A2 and B
given z. To incorporate the last constrain, C, we can multiply by I[f(x) < f(x

ı

)]:

p(f(x)|D
m

, A, B, C) ¥ 1
Z

⁄
I[f(x) < f(x

ı

)]N (f ; mf , Vf )df . (3.39)

Note that f is a finite dimensional vector in the above integral. We can approximate
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this distribution with a Gaussian by moment matching. The variance is given by

v

n

(x|x
ı

) = [Vf ]
1,1

≠ s

≠1

—(— + –) [[V
f

]1, 1 ≠ [Vf ]
1,2

]2 (3.40)
s = [≠1, 1]€Vf [≠1, 1] (3.41)
µ = [≠1, 1]€mf (3.42)

– = µÔ
s

(3.43)

— = „(–)
�(–) (3.44)

(3.45)

where � and „ are the standard normal cdf and pdf, respectively. Using this approxi-
mation the entropy required for PES can be computed as

p(y|D
n

, x, x
ı

) ¥ 1
2 log [2fi exp(v

n

(x|x
n

))] (3.46)

3.3 Problems With PES

In this section, problems with the PES approach and issues limiting its applications are
discussed. Solutions that are investigated in this thesis are proposed.

Treatment of Hyperparameters

Up to this point we have mostly ignored the treatment of the hyperparamters of our
Gaussian process. One options is to fix and use the hyperparamters that maximizing the
marginal likelihood [37]. However, in a data-scares setting such as Bayesian optimiza-
tion it is very likely that we will overfit the hyperparameters using this strategy. We are
uncertain about the values of these hyperparameters and, as with our function values,
we would like capture this uncertainty and harness it to guide exploration. This will not
be possible using point estimates and so we would like to marginalize out the hyperpa-
rameters. In the current implementation of PES this marginalization is performed using
the Monte Carlo method outlined by Snoek et al. in [40].

Equation 2.11 framed acquisition functions in terms of the expectations of utility func-
tions where the expectations are taking over the output space values and the hyperpa-
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rameters:

–(x; D
n

) = E
◊

E
v

[U(x, v, ◊)]

And so this marginalization is performed “outside” of the utility function. For acqui-
sition functions such as PI this outside marginalization makes sense since the order of
integration does not matter.

–

PI

(x : D
n

) =
⁄

◊

p(◊|D
n

) [–
PI

(x : D
n

, ◊)] d◊ (3.47)

=
⁄

◊

p(◊|D
n

)
5⁄

v

p(v|D, ◊)I[v > · ]dv

6
d◊ (3.48)

=
⁄

v

5⁄

◊

p(v, ◊|D)I[v > · ]d
6

◊dv (3.49)

=
⁄

v

p(v|D)I[v > · ]dv (3.50)

Where p(v|D) is the marginal (in terms of the hyperparameters) predictive posterior
distribution of our GP - we are incorporating the uncertainty in the hyperparameter
values into our predictions. The same argument applies to the PI acquisition function.

Indeed, in the current implementation of PES uses this approach:

–

PES

(x : D
n

) =
⁄

◊

p(◊|D
n

) [–
PES

(x : D
n

, ◊)] d◊ (3.51)

=
⁄

◊

p(◊|D
n

)
5
H

Ë
p(y

x

|D
n

, ◊)
È

≠ E
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where xi

ı
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, ◊) and ◊

j ≥ p(◊|D
n

). Unfortunately, the integrals in this expression
(the integrals in the entropy and expectation calculations and the ◊ marginalizing inte-
gral) do not commute. As a result, this expression is not equivalent to the acquisition
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function that we want, which we call Integrated Predictive Entropy Search (IPES):
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where xi
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≥ p(x
ı
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The PES treatment of hyperparameters is computationally convenient since, with the
previously discussed approximations, the entropies required for the PES acquisition func-
tion are computed over univariate Gaussian distributions - this has an analytic solution.

Note that the PES acquisition function computes the expectation over hyperparameter
values of the decrease in entropy of the distribution over x

ı

that results from the se-
lection of a datapoint x conditioned on a fixed set of hyperparameters. Suppose, for
Bayesian optimization, we employ the strategy of using a fixed set point estimate of hy-
perparameter values that we do not change throughout our algorithm. This acquisition
returns the datapoint that, on average, yields the most information about the location of
the maximizer under this strategy. But we know that we do change our hyperparameter
values, or in the hierarchical Bayesian setting update our distribution over hyperparam-
eters, in light of new information. This acquisition function cannot take into account
any reduction in the uncertainty in our hyperparameter values when recommending the
next datapoint.

The IPES aquisition function is identical to the original PES aquision function where
the hyperparameters have been marginalized out of the predictive distribution and so
it is able to recommend points taking into account the uncertainty and reduction in
uncertainty in the hyperparameters.

Kernel Restrictions

Our procedure for sampling from p(x
ı

|D
n

) required us to sample from the spectral
density of our Gaussian process kernel. Some kernels, such as the periodic kernel, are
stationary, but sampling from their spectral density can be di�cult. This procedure also
appealed to Bochner’s theorem and relied on the use of stationary kernels. Although
this simplification makes regression easier, it greatly restricts the space of functions that
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we can model well. In particular, it is di�cult to model non-stationary functions with
such GPs. This is a problem since many of the objective functions for applied problems
for which Bayesian optimization is well suited, such as optimizing the hyperparameters
of a machine learning algorithm [41], are non-stationary.

In chapter 6 I explore three strategies to overcome these issues in order to make (I)PES
applicable to more Bayesian optimization problems. As a first approach, a more flexible
kernel called the spectral mixture (SM) kernel [45] is implemented. As the name suggests,
the kernel was designed to have a Gaussian mixture model spectral density, from which it
is easy to sample. Secondly, I examine input space warping and implement the BetaCDF
input space warping examined by Snoek et al. [41] to better model non-stationary
functions. Thirdly, I attempt to remove the dependency on stationary kernels all together
by introducing an alternate sampling technique for p(x

ı

|D
n

).



Chapter 4

Entropy Approximations of
Gaussian Mixture Models

4.1 GMMs in IPES

The IPES acquision function
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requires computing the entropy over marginal predictive distributions p(y
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). Using the procedure from Snoek et al. [42] we can sample hyperparameters
from the posterior p(◊|D
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) allowing us to obtain Monte Carlo approximations of these
marginal predictive distributions
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Note that the PES appoximation of p(y
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j) yielded a Gaussian distribution.
Utilizing this approximation, both p(y
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j) and p(y
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, x
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, ◊

j) are Gaussians. And
so, the approximations in 4.2 yield Gaussian mixture models (GMM).

Continuing along these lines, our IPES aquision function approximation requires that
we compute the entropies of GMMs. Some approaches for doing so are discussed in the
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following section.

4.2 Taylor Approximations

Let us define our GMM density function as p(y) = q
M

m=1

c

m

N (y; µ

m

, ‡

m

). Then we are
interested in computing

H[y] = ≠
⁄

p(y) log p(y)dy (4.3)

In this section I describe a technique proposed by Huber et al. [22] for approximating
the entropy of a GMM by cleaverly utilizing its Taylor series expansion. They propose a
method to approximate Gaussian mixture entropies for multivariate GMMs but in our
case p(y|D

n

, x) is univariate which simplifies the situation quite a bit. We will focus on
this case.

To distinguish between the GMM pdf inside and outside of the logarithm in the com-
putation of 4.4, the authors write

H[y] = ≠
⁄

f(y) log g(y)dy (4.4)

with f(y) = g(y) = p(y).
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where g

n(y) is the n-th derivative of g(y). The approxiation is achieved by writing
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which is a weighted sum of gaussian moments. Note that these moments have a closed
from
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Now, all that are needed for the approximation are the derivatives g

(n)(y). For a fixed N

these can be computed by hand. In the experimentation, a Taylor approximation up to
order four was computed by hand. In order to observe the e�ect of increasing the degree
of the Taylor approximations on the accuracy of our approximation, arbitrary order
Taylor approximations were implemented using the automatic di�erentiation software
autograd

1 from the Harvard Intelligent Probabilistic Systems Group.

4.3 Quadrature Methods

Since the distributions we are approximating are univariate, it is possible that quadra-
ture methods for approximating integrals would perform well. A quadrature approxi-
mation has a nice feature in that the computational complexity of the entropy calcu-
lation does not grow with the number of components of our GMM. Of course, most
quadrature methods are already going to be much slower than the Taylor-based en-
tropy approximation presented in the previous section. Experiments with quadrature

1https://github.com/HIPS/autograd
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were performed using the python scientific computing package scipy

2, in particular the
scipy.integrate.quad

3 method which uses a numerical integration technique taken
from the Fortran library QUADPACK.

For our experiments, we are unable to compute the entropy analytically so we need to
deterime a target for comparison. For this purpose, I implemented a simple Riemann
Sum approximation with a fine resolution partition of the domain (approximately 10y

sample points). The limits of the appriximate integral were set to the points where the
function approximately vanishes.

4.4 Experimental results

We first compare our Reimann sum approximation that we consider the ground truth
(except in the case of a single gaussian where we compute the entropy analytically) to
the scipy quad method. For this comparison we approximate the entropy of gaussian
mixture models whose means are drawn uniformly on the interval [≠20, 20] and variances
drawn uniformly from [0, 5].

As to be expected, the two quadrature approximate integrals match almost exactly, as
shown in figure 4.1.

Since the results were almost identical and the scipy quad method runs much faster
(about 105 times faster), for our Taylor approximation experiments we will use the scipy

quad approximation as our ground truth.

For the Taylor approximations, entropies of 30 randomly generated GMM with 0, 11, 21, 31
and 41 Gaussian components were approximated. The enropy of each GMM was approx-
imated using scipy quad (as the ground trouth), our “manual” Taylor approximations,
where the derivatives were calculated and implemented by hand for Taylor polynomi-
als 2 and 4, and “auto” Taylor approximations where the derivatives were handled by
autograd for Taylor polynomials 2, 4, 6 and 8. Note that odd moments of Gaussians
are zero so it was not necessary to test odd Taylor approximations. The results of these
experiments are shown in figure 4.2.

2https://www.scipy.org/
3http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
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Figure 4.1: A comparison of “true” GMM entropy approximations given by implemented
Riemann sum method and the scipy quad method. The legend shows the number of
components

Figure 4.2: Taylor series entropy approximations. The top row of plots were produced
using Autograd derivatives and the bottom row using manually implemented derivatives.
The left and centre plots are the log mean absolute di�erence, and log standard deviation
absolute di�erence between the taylor approximations and the quadrature approximation
produced by scipy quad respectively. Each datapoint represents 30 runs. The right
plots are the mean wallclock time to produce each approximation in seconds. All y-axis
are on the log scale.
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As expected, the mean and standard deviaitons of errors for the manual and auto Tay-
lor approximations 2 and 4 line up almost exactly. Unsurprisingly, the accuracy and
robustness, in term of standard deviation, degrade as more Gaussian components are
used in the GMM. It is surprising, however, that after about 4 components, increasing
the number of Taylor components in our approximation seems to decrease the accu-
racy and drastically increase the variance in our approximation. This is possibly due to
numerical issues when evaluating derivatives that vanish at the means of the GMM.

The implementation of the Taylor approximations is also significantly slower than the
scipy quad implementation. The Taylor approximations become slower as more Taylor
components are added - additions that apparently make the approximations worse.

As a consequence of these experiments the scipy quad based entropy approximations
were used in my implementation of IPES in pybo and reggie.



Chapter 5

Integrated Predictive Entropy
Search

5.1 The IPES Approximation: Putting It All To-
gether

The IPES acquisition function

–

IPES

(x : D
n

) = H
Ë
p(y

x

|D
n

)
È

≠ E
p(xı|Dn)

5
H

Ë
p(y

x

|D
n

, x
ı

)
È6

(5.1)

(5.2)

is computed as follows: a set of N samples from the hyperparameter posterior are gath-
ered using MCMC slice sampling as described in [40] and [34]. Using this hyperparameter
sample, the hyperparameters are marginalized out of the GP predictive posterior using
a Monte Carlo approximation

p(y
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) ¥
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) (5.3)

resulting in a Gaussian mixture model. The entropy of this GMM is computed using
a quadrature approximation, as discussed in chapter 4. By using Fourier approximate
samples from the GP posterior we collect a sample of maximizer locations x

ı

. The PES
approximation for the maximizer and hyperparameter conditioned predictive posterior
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yields a Gaussian. This approximation is used in the computation of the IPES acquisition
function. Again, we can marginalize the hyperparameters out of this distribution using
Monte Carlo with the same hyperparameter sample, and compute the entropy using
quadrature. Finally, the expectation, of this entropy is computed using Monte Carlo
via our maximizer sample. The di�erence between the PES and IPES computations is
highlighted in equations 5.4 and 5.5.
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5.1.1 Implementation Issues

Although we are willing to pay the extra computational cost from Modelling our objective
an solving our acquisition function to produce recommendations, this overhead makes
experimentation a bit di�cult.

Since quadrature is used to compute the acquisition function, gradients based optimiza-
tion methods such as LBFGS cannot be used to optimize –.

Implemented in pybo is the Grid domain object that equally partitions the problem
domain into a d-dimensional grid of candidate query points. The domain is then treated
as discrete and the acquisition function optimized over these point. This domain object
performed well for low dimensional problems when we were able to use a su�ciently fine
grid resolution. To apply IPES to higher dimensional problems I implemented a Sampled

domain object which uniformly sampled a collection of candidate query points from our
domain at each iteration. Using this method allows increasing the dimensionality of our
problem without increasing computational cost but performance will obviously degrade
as we will explore fewer regions in our domain. We appeal to randomness to hopefully
not miss out on important parts of our domain that can fall through the cracks of the
grid.
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5.2 Experimental Results

I present the results of experiments to determine the performance of Bayesian opti-
mization using the IPES acquisition function when compared to using the acquisition
functions discussed in chapter 2. In particular, we are interested in measuring its per-
formance against PES.

For the experiments, broad uninformative uniform or log normal prior distributions for
the hyperparameters were used. The kernel function SEARD implement pybo was used.
We compare the (immediate) regret of the di�erent methods as a function of objective
function evaluations. Many of the objectives used in this section are implemented in the
benchfunk

1 python package by Ho�man and Shahriari intended for experimentation
with Pybo.

Note that the summary statistics for each plot is only over 50 random initializations
starting from a sample of three points due to the high computational costs of these
methods. The variance in each case is pretty large due to the small sample size however,
we will still draw conclusions from the expectations.

5.2.1 Experiment 1: Sinusoidal Function

For our first set of experiments, we use the one dimensional sinusoidal function defined
below:

f(x) = ≠ cos(x) ≠ sin(3x) 0 Æ x Æ 2fi (5.6)

The Thompson Sampling (TS), Upper Confidence Bound (UCB), Probability of Im-
provement (PI), Expected Improvement (EI), Predictive Entropy Search (PES) and
Integrated Predictive Entropy Search (IPES) methods were all used. Again note the
large variance over such few runs, especially in the case of Probability of Improvement.
On this objective, TS does pretty well, especially for ‡

2 = 0.01. Notice that in all cases,
both PES and IPES are consistently toward the bottom of the collection of curves and
perform better than the other acquisitions in the higher noise settings of ‡

2 = 0.1 and
0.5. For the lower noise settings, IPES initially performs worse than PES but eventually

1https://github.com/mwho�man/benchfunk
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Figure 5.1: A visualization of the recommendations produced by the acquisition func-
tions tested. Notice the di�erence in the estimates yielded by PES and IPES of the
reduction in predictive entropy resulting from queries locations.
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Figure 5.2: A comparison of various acquisition functions applied to the sinusoidal func-
tion (equation 5.6), with likelihood noise 0.01, 0.05, 0.1 and 0.5



38 Integrated Predictive Entropy Search

overtakes or equals with the error values of PES. Notice that, generally, acquisitions
functions that are known to perform more exploration (TS, USB) perform better after
many iterations than those that are known to be more myopic (PI, EI).

5.2.2 Experiment 2: The Gramacy Function

For our second set of experiments we use the one dimensional objective used by Gramacy
and Lee in [14]:

f(x) = sin(10fix)
2x

≠ (x ≠ 1)4

. (5.7)

Again, on this objective, we compare TS, UCB, PI, EI, PES and IPES methods were
examined. As mentioned before, no acquisition function is known to be optimal on all
problems and it is evident when comparing acquisition performance on the sinusoidal
objective to that on the Gramacy objective. Thompson sampling does surprisingly well,
especially for ‡

2 = 0.01. Whereas in the sinusoidal case, functions that spent more
e�ort exploring performed well, here they do not. Notice that PI, the worst performing
acquisition function in on the sinusoidal objective is the best performing one here. Note
that IPES performs rather poorly in this case and more poorly than PES in the low
likelihood noise settings. When likelihood noise is larger IPES performs about on par or
better than PES, perhaps because learning about the likelihood noise is more important
in these cases - although this was not observed on the sinusoidal objective.

Although not specifically designed with the exploration/exploitation trade-o� in mind,
the results on the sinusoidal and Gramacy function suggest that IPES is, unsurprisingly,
more on the exploration end of the trade-o�.

5.2.3 Experiment 3: The Modified Branin Function

For the treatment of the hyperparameters to matter it must be the case that gaining
information about the hyperparameters is important to the task of optimizing. If we
have too few hyperparameters, a large spectrum of hyperparameters values perform
pretty well, or learning about the functions is more important than learning about the
hyperparameters we should not expect to see a performance di�erence between IPES and
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Figure 5.3: A comparison of various acquisition functions applied to the Gramacy func-
tion with likelihood noise 0.01, 0.05, 0.1 and 0.5
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PES. Also, in a data scares setting, as we increase the number of hyperparameters in our
model the more important a fully Bayesian treatment of the hyperparameters becomes.
In an attempt to draw a more clear distinction between these two methods, I attempted
to modify the two dimensional Branin function and embed it in four dimensional space.
The objective used was defined as
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This example failed to drastically distinguish between the two methods, although IPES
does perform slightly better overall on this objective (except perhaps between iterations
40 and 80 on ‡

2 = 0.05)

HyperParameter learning

We expect the hyperparameter posteriors to converge more quickly, and hopefully better
estimates, using IPES compared to PES. This is di�cult to evaluate because we do not
know what a good hyperparameter distribution at iteration n of Bayesian optimization
would be. The entropy of the hyperparameter posterior might be an interesting metric
(although one I did not examine it) and one we can estimate via Monte Carlo methods.
It is possible, however, that this metric would reward overfitting of the hyperparameters
and overconfidence in estimates.

In this section we plot visualizations of samples from the hyperparameter posteriors
at various iterations of Bayesian optimization using PES and IPES. Densities for each
sample were are estimated and plotted using the Gaussian kernel density estimation
from scikit-learn

2.

Figure 5.5 shows four dimensional length scale samples at iterations 1,17, 50, 99. Figure
5.6 shows kernel variance hyperparameter samples at iterations 1, 17, 25, and 100. Figure
5.7 shows likelihood variance samples at iterations 1, 25, 50, 99.

2http://scikit-learn.org



5.2 Experimental Results 41

Figure 5.4: A comparison of various PES and IPES acquisition functions applied to the
modified four-dimensional Gramacy function with likelihood noise 0.01, 0.05, and 0.1
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Figure 5.5: Four dimensional kernel length scale hyperparameters samples from the
posterior at iterations 1 (top left), 17 (top right), 50 (bottom left) and 99 (top right).
Blue corresponds to the PES method and green corresponds to the IPES method.

Generally, we observe that after 100 samples, the samples from each posterior taken when
using PES or IPES look similar immediately after initialization and after 100 iterations.
We take the fact that both sets of distributions yield similar looking collections of samples
after 100 iterations as evidence that these final distributions are pretty good.

The sample profiles from the two methods separate from each other - suggesting that they
are learning about the hyperparameters at di�erent rates. Interestingly, when hyperpa-
rameters samples collapse to being located around a smaller location when compared
initial samples, IPES does so more quickly - evidence that the quires that IPES makes
yields more information about the hyperparameters. However, when the hyperparameter
samples expand, they do so more slowly for IPES.

5.2.4 Experiment 4: The Six Dimensional Hartmann Function

Again, to distinguish between the performance and behaviour of PES and IPES, we
increase the number of relevant hyperparameters and apply these methods to an even
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Figure 5.6: Kernel variance samples from the posterior at iterations 1 (top left), 17 (top
right), 25 (bottom left) and 100 (top right). Blue corresponds to the PES method and
green corresponds to the IPES method.

Figure 5.7: Likelihood variance hyperparameters samples from the posterior at iterations
17 (top left), 25 (top right), 50 (bottom left) and 99 (top right). Blue corresponds to the
PES method and green corresponds to the IPES method.
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Figure 5.8: A comparison of various PES and IPES acquisition functions applied to the
the Hartmann six-dimensional function with likelihood noise 0.01, 0.05, and 0.1

higher dimensional problem - the six Dimensional Hartmann Function [1]:
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Figure 5.8 shows that the performance trend of the previous experiments continues -
performance of both methods are very close. In this case IPES performs slightly better
than PES in the early stages of Bayesian optimization and PES performing better later.
Note that the larger variance in results is due to statistics being computed over 30 runs
instead of 50.



Chapter 6

Extending the Applicability of IPES

In order to implement a kernel k(x, xÕ) for its use in PES and IPES in the Pybo:

1. We must be able to implement the first and second partial derivatives with respect
to the input space: ˆk

ˆx

and ˆ

2
k

ˆx

Õ
ˆx

.

2. The kernel must be stationary: k(x, xÕ) = k(x ≠ a, xÕ ≠ a) for any a œ RD.

3. We must be able to sample from the (normalized) kernel spectral density
p(w) = 1

(2fi)

d
–

s
e

iw

€
·k(·,0)

d·

These conditions severely restrict the class of kernels that can be used for (I)PES, par-
ticularly the stationarity requirement, and the performance of the IPES method on real
world problems. In the following sections we examine some more flexible kernels than
SEARD that satisfy these conditions and examine some strategies for weakening these
conditions in order to extend the class of problems on which (I)PES can be e�ective.

6.1 Flexible Kernels

The first approach will be to implement more flexible kernels that help better model
the types of real world objectives that we are interested in yet still satisfy the above
requirements.
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6.1.1 Spectral Mixture Kernel

The spectral mixture kernel (SM) was introduced by Wilson and Adams in [45]. Rather
than defining a kernel and then attempting to derive its spectral density, the authors
take the reverse approach my first defining the class of kernels having a spectral density
of the form S(s) = [„(s) + „(≠s)]/2 where
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œ R, and D is the dimension of our
input space.

We can easily sample from the spectral density because it is simply a linear combination
of Gaussians. Since we can easily sample from the kernel spectral density, this kernel
is well suited for the Thompson sampling method as well as producing Fourier approxi-
mate GP samples from the GP posterior used to approximate samples from p(x

ı

|D
n

) in
(I)PES.

The authors derive the kernel defined by this spectral density, as discussed in chapter
3.6 - the Spectral Mixture kernel:
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(p)) (6.2)

The SM kernel is very flexible and the authors were able to well approximate many
popular kernels with various hyperparameter values (see figure 6.1 In the implementa-
tion of this kernel, it was necessary to compute and implements its partial derivatives
mentioned above. The details of this implementation is given in appendix ???????
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Figure 6.1: Visualizations of the Spectral Mixture (SM) kernel and Fourier approxima-
tions. Left: Approximating a periodic kernel using a SM kernel with one component
with large variance hyperparameter. Centre: SM kernel with one component. Right.
SM kernel with three components.

6.1.2 Input Space Warping

Although it is required the kernel be stationary on the space on which it is applied, we
are free to first map our objective input space to a new kernel input space:

RD ◊ RD

¸ ˚˙ ˝
input space

w≠≠æ RD

Õ ◊ RD

Õ

¸ ˚˙ ˝
warped space

k≠≠æ R (6.3)

This procedure is called input warping. Similar to the way that kernel functions allows
us to extend finite dimensional euclidean inner products to more general and flexible
measures of similarity, such as the inner product of an infinite dimensional vector space
embedding (chapter 6 from [4]), this simple but powerful idea allows us to add a lot of
flexibility to our class of stationary kernels and model non-stationary behaviour.

Snoek et al. [41] introduce a particular input space warping using the Beta distribution’s
cdf functions. The warping was introduced specifically for their use with stationary
kernels in Bayesian optimization. They modify the kernel k(x, xÕ) = k

Õ(w(x, xÕ)) defining
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where B(–, —) is the normalization constant for the Beta cdf function BetaCDF.
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This warping function allows us to approximate linear, exponential, The authors describe
placing particular priors over the hyperparameters – and — to capture prior beliefs about
the type of warping to apply.

Implantation of the BetaCDF warping kernel in Pybo is relatively straightforward. Al-
though the BetaCDF has no closed form solution for non-integer values [41], accurate
approximations are available using the scipy stats python package. The gradients with
respect to the input space are passed through the original gradient computations using
chain rule. The BetaCDF warping function was applied in particular to the SEARD
kernel. The hyperparameters – and — are treated as the other kernel hyperparameters
and can be learned through optimization or sampled from hyperparameter distributions
using MCMC slice sampling.

6.2 Loosening the Kernel Requirements

The second approach examined in this dissertation is to loosen or remove these require-
ments which restrict the class of kernels that can be applied to (I)PES

6.3 Bootstrap Sampling

Both the stationarity and the spectral sampling requirements are due to the Fourier
approximate samples from our GP, discussed in chapter 3. In Pybo, I implemented a
new approximate sampling procedure yielding analytic samples from our GP that can
me optimized to produce approximate samples from p(x

ı

|D
n

):

Algorithm 2 Bootstrap Sampling
Input: GP posterior at Bayesian optimization iteration n, GP(µ

n

, k

n

|D
n

)
1: Sample m input space values x

i

œ X .
2: Sample m y-values from N (y; m, V) where m and V are the mean vector and Co-

variance matrix resulting from µ

n

, k

n

applied to the sampled input locations.
3: Define DÕ

n

= D
n

fi{(x
i

, y

i

)}m

i=1

. Recondition (a copy) the GP posterior on DÕ
n

yielding
GP(µÕ

n

, k

Õ
n

|DÕ
n

)
return x

ı

= argmax
xœX µ

Õ
n

(x)

Over the input space, a uniform sampling procedure inside the convex hull defined by
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Figure 6.2: A visualization of Fourier approximate GP samples and bootstrap approxi-
mate GP samples.

the current set of observations {x
1

, . . . , x
n

} was implemented. Generally, for a GP with
zero prior mean, sampling outside of this region will not capture information about the
GP or lead to more accurate approximate samples.

Note this allows for the use of the Thompson sampling strategy with non-stationary
kernels as well. A downside to this procedure is it slows down our sampling process
since the we need to compute the predictive mean conditioned on each of the boot-
strapped samples from our GP, a procedure which is not necessary using our Fourier
approximations.

Note that although this it does require reconditioning our GP for every sample of x
ı

generated and is much more expensive than Fourier sampling. This cost is not too
expensive at early stages of Bayesian optimization and depends on the number input
samples used.

6.4 Removing Gradient Conditioning

A computational and implementational bottleneck is the requirement of the kernel gra-
dients. The particular gradients in condition 1. do not aid optimization but instead are
used as for constraints in the approximation procedure to obtain p(y|D

n

, x
ı

, x). Whether
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Figure 6.3: Remove the local optima condition in the approximation of p(y|D
n

, x
ı

, x)

implemented by hand or using automatic gradient packages such as autograd

1, com-
puting these gradients slows down the computation of the PES and IPES acquisition
functions, especially using discrete domain approximation techniques. The question is,
how much do these gradients contribute to this approximation and would removing them
degrade performance?

Recall from section 3.2.2 that these gradients are used to condition the predictive pos-
terior p(y|D, x) on the x

ı

being a local maximizer. Removing this constraint still yields
a valid approximation, but relies on the GP mean and covariance to pull the function
downward away from x

ı

given the remaining conditions - that f(x
ı

) Ø f(xÕ) where
xÕ œ {x

1

, . . . , x
n

, x}. Care should be taken to ensure that the interaction between this
approximation and the GP used for Bayesian optimization produces the desired e�ective
conditional p(y|D

n

, x
ı

, x) (see figure 6.3).

1https://github.com/HIPS/autograd
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Figure 6.4: Comparison of the SM and SE kernels.

6.5 Experimental Results

6.5.1 Experiment 1: Flexible Kernels

As a comparison of the SM kernel with three components and SE(ARD) kernel, both
were applied using the EI and PES acquisition functions to the Gramacy objective with
likelihood noise ‡

2 = 0.05. Note that due to the slow performance when using a heavily
parametrized kernel, this experiment was performed using optimized point samples for
hyperparameters values. In this case, with only one hyperparameter sample, IPES is
identical PES. PES outperforms EI in either case but it seems as thought the SE is
su�ciently powerful for this one dimensional problem and the SE kernel perhaps overly
parametrized. Without a fully Bayesian treatment of the hyperparameters it is possible
that the values were overfit or stuck in a local optima.

6.5.2 Experiment 2: Removing Kernel Conditions

Let us take a closer look at the question posed earlier - does removing the local optima
condition in the approximation of p(y|D

n

, x
ı

, x) degrade performance of PES or IPES.
These two methods were applied using the standard approximations in PES and IPES
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Figure 6.5: Comparison of using bootstrap approximate sampling (Boot), Light Condi-
tioning (Light), and both on performance (Light Boot). GP is the standard implemen-
tation.

discussed in chapter 3 (GP in figure 6.5), Bootstrap sampling (Boot) discussed in 6.3,
light conditioning discussed in section 6.4, and both (Light Boot). Indeed, for this
example the performance of both IPES and PES su�ers. The light conditioning seems
to have the greatest negative e�ect. Interestingly, IPES seems to be more robust to
these modified approximations. Although this suggests that the use of the modified
approximations should be avoided if possible, they provide access to kernels that we
were not able to use before. For some problems, x We will examine this further in
experiment 3.

6.5.3 Experiment 3: Input Space Warping

Although it is possible to implement the kernel spectrum has to be sampled over the
warped space and the the approximate Fourier must also be applied to the warped space.
This is one of the rare instance where it is di�cult to retain the modularity of Pybo as the
current infrastructure would have to be modified to support this procedure. Instead, I
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Figure 6.6: Comparison of the performance of Warped SEARD with light conditioning
and bootstrap sampling and SEARD with the standard (I)PES implementation.

implemented the Warped SEARD kernel using Bootstrap sampling. For this experiment
I also used light conditioning. Figure 6.6 shows a comparison of the performance of
PES and IPES using these two kernels. From this figure we can draw two observations.
Firstly, notice this is an example where the IPES treatment of the extra hyperparameters
in the warped SEARD kernel pays of as the warped SEARD IPES method performs the
best and there is a large dependency between the performance of the warped SEARD
kernel using PES and using IPES. For this example it is better to use standard SEARD
kernel with fewer parameter if PES is to be used. Secondly, notice that it is better to
pay the potential performance loss due to the approximations examined in experiment
3 for the performance gain yielded from the use of the Warped SEARD kernel paired
with the IPES acquisition function. This answers our previous question - if a GP with
a particular kernel provides a much better model your objective than those that satisfy
conditions 1, 2, and 3 above, it is most likely worth it to use Bootstrap sampling and
weakened conditions if it we are able to then use it.





Chapter 7

Conclusion

In this dissertation, I have introduced the Integrated Predictive Entropy Search ac-
quisition function which improves upon the Predictive Entropy Search acquisition by
using the marginal predictive distributions in its computation. In this way, we estimate
the reduction in entropy in x

ı

using predictions where the uncertainty in the hyper-
parameters has been marginalized out - a more theoretically sound treatment of the
hyperparameters.

Experiments show that the performance of PES and IPES are very similar using kernel
functions with few hyperparameters on low dimensional objectives. Experiment 3 from
chapter 6 demonstrated a scenario where the proper fully Bayesian treatment of the
hyperparameters provided by IPES yielded better results over PES.

By examining each of the acquisition functions times in the Bayesian optimization proce-
dure (see figure 5.1), it is clear that the IPES procedure produces a di�erent estimate in
the entropy reduction in x from PES. Although, with the simple examples investigated
it was not clear that the IPES method was substantially better than PES - certainly
not for all objectives. It would provide an excellent candidate in a portfolio of objective
functions, as in [19] and [38]. Alternate approximations in the computation of PES and
IPES, as well as more flexible kernels examined in chapter 6, extend the applicability of
PES and IPES to more realistic objective functions that occur in real-world applications

Although experimentation has provided some positive results in favour of IPES, I believe
more experimentation would be fruitful, especially experiments applying IPES to high
dimensional problems where complicated kernel compositions are necessary to yield good
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results. In such a scenario, I suspect that information gained about the hyperparameters
may more valuable. It may also prove to be a useful tool in structure discovery when
such composition of kernels are applied [11]. In order to perform such experiments,
however, e�orts need to be made to improve the speed of the PES/IPES methods.

For Bayesian optimization applications where it is very expensive to query our objective
function, we are willing to pay the extra computation cost modelling the objective and
optimizing the acquisition function. This trade-o� makes sense in practice but makes
experimentation di�cult when we have the opposite situation - cheaper simulated ob-
jectives and expensive acquisition functions. For this reason, it is worth devoting some
e�ort towards speeding up the Bayesian optimization process. It has been shown that
from our collection of current acquisition functions, no single one performs best on all
applications or objectives. With a faster experimental framework, we can better navi-
gate our current choices and outline their strengths and weaknesses. We can even work
toward automating the process of recommending acquisitions functions, recommending
hyperparameter priors, and Bayesian optimization in general.
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